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Preface 
 

 

 I 

Calculation of Deep Foundations 
 
Preface 
 
Today, nearly every engineering office has its own computer programs for the analysis and design of 
piled rafts. Furthermore, most of the available programs under Windows are user-friendly and give 
very excellent output graphics with colors. Consequently, theoretically a secretary not an engineer 
can use them. But the problem here is, how can man control the data and check the results.  

The purpose of this book is to present methods, equations, procedures and techniques used in the 
formulation of the computer analysis of piled rafts. These items are coded in the program ELPLA. 

This book contains many practical problems which are analyzed in details by using the program 
ELPLA. It is important for the engineer to be familiar with these information when carrying out 
computer analysis of piled rafts. An understanding of these concepts will be of great benefit in 
carrying out the computer analysis, resolving difficulties and judging the acceptability of the results. 
Three familiar types of subsoil models (standard models) for piled raft analyses are considered. The 
models are Simple Assumption Model, Winkler’s Model and Continuum Model. In the analysis, rafts 
are treated as elastic or rigid. In this book the Finite Element-Method was used to analyze the raft. In 
which plate bending elements represent the raft according to the two-dimensional nature of 
foundation. The development of the finite element equations for plate elements is well documented 
in standard textbooks such as Schwarz (1984) and Zienkiewicz/ Cheung (1970). Therefore, it is not 
duplicated in this book. 
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Chapter 1 
 

1 Models for analyzing piled raft 

1.1 Introduction 
 
This chapter describes the most common practical models used in the analysis of foundations. Piled 
raft is a raft on piles that transmits its loads to the soil. It must include often considerable moments 
and forces. In times, when there no computers were available, simplified methods were used 
considering as low as possible computation effort to receive the results with acceptable accuracy. 
The computers whose programming and memory possibilities are developed increasingly caused a 
revolution of the calculation practice. Now the programming and extensive computation effort can 
expand considerably to achieve the results as perfect as possible to the reality. These methods are 
considered particularly for the analysis of mostly deformation-sensitive large structures. 
 
The subsoil models for analysis of pile foundation (standard models) can be divided into three main 
groups: 
  

A. Simple assumption model, 
B. Winkler's model, 
C. Continuum model. 

 
Simple assumption model does not consider the interaction between the foundation and the soil. The 
model assumes a linear distribution of contact pressures beneath the foundation. Winkler's model is 
the oldest and simplest one that considers the interaction between the foundation and the soil. The 
model represents the soil or piles as elastic springs. Continuum model is the complicated one. The 
model considers also the interaction between all foundation elements and soil. It represents the soil 
as a layered continuum medium or isotropic elastic half-space soil medium.  
 
Although Continuum model provides a better physical representation of the supporting soil, it has 
remained unfamiliar, because of its mathematical difficulties where an application of this model 
requires extensive calculations. Practical application for this model is only possible if a computer 
program or appropriate tables or charts are available. These tables and charts are limited to certain 
problems. 
 
For this purpose, a general computerized mathematical solution based on Finite elements-method 
was developed to represent an analysis for pile foundations on the real subsoil model. The solution 
can analyze foundations of any shape considering holes within the foundation and the interaction of 
external foundations. This mathematical solution is coded in the program ELPLA. The developed 
computer program ELPLA also can analyze different types of subsoil models, especially the three-
dimensional Continuum model that considers any number of irregular layers.  
 
In this book, the three standard soil models are described through 9 different numerical calculation 
methods. The methods graduated from the simplest one to the more complicated one covering the 
analysis of most common pile foundation problems that may be found in the practice. 
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1.2 Description of the numerical calculation methods 
 
According to the three standard soil models (simple assumption model - Winkler's model - 
Continuum model), nine numerical calculation methods are considered to analyze the raft as shown 
in  Figure 1-1 und  Table 1-1. 
 
Table 1-1 Numerical calculation methods 
 
Method No. 

 
Method 

 
1 
 
 
2 
 
 
3 
 
 
4 
 
 
5 
 
 
6 
 
 
 
7 
 
 
 
8 
 
 
9 

 
Linear contact pressure 
(Simple assumption model) 
 
Constant modulus of subgrade reaction 
(Winkler's model) 
 
Variable modulus of subgrade reaction 
(Winkler's model) 
 
Modification of modulus of subgrade reaction by iteration 
(Winkle's model/ Continuum model) 
 
Modulus of compressibility method for elastic raft on half-space soil 
medium (Isotopic elastic half-space soil medium - Continuum model) 
 
Modulus of compressibility method for elastic raft on layered soil medium  
(Solving system of linear equations by iteration) 
(Layered soil medium - Continuum model) 
 
Modulus of compressibility method for elastic raft on layered soil medium  
(Solving system of linear equations by elimination) 
(Layered soil medium - Continuum model) 
 
Modulus of compressibility method for rigid piled raft on layered soil 
medium  
(Layered soil medium - Continuum model) 
 
Modulus of compressibility method for rigid free-standing piled raft on 
layered soil medium  
(Layered soil medium - Continuum model) 
(elastische Schichten - Kontinuummodell) 
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Figure 1-1 Numerical calculation methods of rafts (methods 1 to 9) in program ELPLA 
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Today, The Finite elements-method is the most powerful procedure available in many complex 
problems. It can be applied to nearly all engineering problems, especially in structure analysis 
problems. In this book, the Finite elements-method is used to analyze the raft for all numerical 
calculation methods except Modulus of compressibility method for rigid piled raft on layered soil 
medium (method (8)), which does not obey the elasticity rules. In the Finite elements-analysis, the 
raft is represented by rectangular plate bending elements according to the two dimensional nature of 
foundation. Each node of plate or grid elements has three degrees of freedom, vertical displacement 
w and two rotations θx and θy about x- and y-axis, respectively. The development of the finite element 
equations is well documented in standard textbooks. Therefore, it is not duplicated in this book. The 
reader can see as an example that of Zienkiewicz/ Cheung (1970) or Schwarz (1984) for further 
information on the development of finite element equations.  
 
To formulate the equations of the numerical calculation methods both the raft and the contact area of 
the supporting medium are divided into rectangular or triangular elements.  Compatibility between 
the raft, piles and the soil medium in vertical direction is considered for all methods except Linear 
contact pressure method (method 1). The fundamental formulation of equilibrium equation for the 
raft can be described in general form through the following Eq. (1.1): 
 
 

[ ]{ } { } Fk p =δ                                                                 (1.1) 
 
where the vector of forces {F} contains the action and reaction forces acting on the raft. In principle 
for all calculation methods, the action forces are known and equal to the applied forces on the raft, 
while the reaction forces (contact forces) are required to be found according to each soil model. 
 
According to subsoil models (Simple assumption model - Winkler's mo del - Continuum model), 9 
numerical calculation methods are considered to find the contact pressures, and hence to analyze the 
raft. The next pages describe the interaction between the raft and subsoil medium in these methods. 

1.2.1 Linear contact pressure - Simple assumption model (method 1) 

This method is the simplest one for determination of the pile forces. The assumption of this method 
is that there is no compatibility between the pile foundation deflection and the soil settlement. In the 
method, it is assumed that pile forces are distributed linearly on the bottom of the raft (statically 
determined) as shown in  Figure 1-1. In which the resultant of soil reactions coincides with the 
resultant of applied loads.   
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Figure 1-2 Pile force distribution for Simple assumption model 

In the general case of a foundation with an arbitrary unsymmetrical shape and loading with Mx and 
My, based on Navier’s solution the pile force Pi at any point i from the geometry centroid on the 
bottom of the foundation is given by: 
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and:  
Pi  Force in pile i, [kN]. 
N Sum of all vertical applied loads on the pile cap, [kN]. 
xi  Coordinate of pile i from the centroidal axis x, [m]. 
yi  Coordinate of pile i from the centroidal axis y, [m]. 
Mx Moment due to N about the x-axis, Mx = N ey ,[kN.m]. 
My Moment due to N about the y-axis, My = N ex ,[kN.m]. 
ex Eccentricity measured from the centroidal axis x, [m]. 
ey Eccentricity measured from the centroidal axis y, [m]. 
n Number of piles under the pile cap, [-]. 
 
For a foundation of rectangular shape, there are two axes of symmetry and Ixy = 0. Therefore, the pile 
force Pi of Eq. (1.2) reduces to:   
 

y 
 I
 M + x 

I
M + 

n
N = P i

x

x
i

y

y
i                                                        (1.3) 

For strip pile foundation, the pile forces can be obtained from: 
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 x 
I

M + 
n
N = P i

y

y
i                                                              (1.4) 

 
while for a foundation without moments or without eccentricity about both axes the pile force Pi will 
be uniform under the foundation and is given by:  
 

  
n
N = Pi                                                                    (1.5) 

1.2.1.1 System of equations of Linear contact pressure method 

 
The foundation can be analyzed by working out the soil reactions at the different nodal points of the 
Finite elements-mesh. This is done by obtaining the pile force Pi from Eq. (1.2).  
 
Considering the entire foundation, the foundation will deflect under the action of the total external 
forces {F} due to known applied loads {P} and the known soil reactions {Q}, where: 
 

{ } { } { }  QPF −=                                                              (1.6) 
 
The equilibrium of the system is expressed by the following matrix equation: 
 

[ ]{ } { } { }  QPk p −=δ                                                            (1.7) 
 
where: 
{Q}   Vector of pile forces. 
{P} Load vector from applied forces and moments on the foundation. 
{δ} Deformation vector. 
[kp] Plate stiffness matrix. 
 

1.2.1.2 Equation solver of Linear contact pressure method 

As the plate stiffness matrix [kp] in Equation (1.7) is a diagonal matrix, the system of linear equations 
(1.7) is solved by Banded coefficients-technique. The unknown variables are the nodal displacements 
wi and the nodal rotations θxi  and θyi  about the x- and y-directions. 
 

1.2.2 Modulus of subgrade reaction-Winkler's model (methods 2 and 3) 

The oldest method for the analysis of foundation on elastic medium is the modulus of subgrade 
reaction, which was proposed by Winkler (1867). The assumption of this method is that the soil 
model or piles are represented by elastic springs as shown in  Figure 1-3 according to Poulos (1994). 
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The settlement si of the soil medium or the pile at any point i on the surface is directly proportional 
to the contact force or pile reaction Qi. 

 
Figure 1-3 Simplified representation of pile for Winkler's model after Poulos (1994) 

1.2.2.1 System of equations of Modulus of subgrade reaction 

For a node i on the Finite elements-mesh, the contact force or the pile reaction Qi is given by: 
 

s k = Q iii                                                                   (1.8) 
 
where: 
Qi   Contact force or the pile reaction on a node i, [kN]. 
ki Soil stiffness or pile stiffness at node i, [kN/m]. 
 
Considering the entire foundation, Eq. (1.8) can be rewritten in matrix form as: 
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Eq. (1.9) is rewritten in a simple form as: 
 

{ } [ ]{ }  sk = Q s                                                              (1.10) 
where: 
{Q}   Vector of contact forces and pile reactions 
{s} Settlement vector. 
[ks] Stiffness matrix of the soil and piles. 
 
The foundation will deflect under the action of the total external forces {F} due to known applied 
loads {P} and the unknown soil reactions {Q}, where: 
 

{ } { } { }  QPF −=                                                           (1.11) 
 
The equilibrium of the raft-pile-soil system is expressed by the following matrix equation: 
 

[ ]{ } { } { } QP = k p −δ                                                         (1.12) 
 
Eq. (1.10) for Winkler’s model can be substituted into Eq. (1.12) as: 
 

[ ]{ } { } [ ]{ } s k - P =  k sp δ                                                        (1.13) 
 
Considering the compatibility of deformation between the plate and the soil medium, where the soil 
settlement si equal to the plate deflection wi, Eq. (1.13) becomes: 
 

[ ] [ ][ ]{ } { } P =  k+k sp δ                                                        (1.14) 
 
Equation (1.14) shows that the stiffness matrix of the whole raft-pile-soil system is the sum of the 
plate and the soil stiffness matrices, [kp]+[ks]. 

1.2.2.2 Equation solver of Modulus of subgrade reaction 

It should be noticed that the soil stiffness matrix [ks] is a purely diagonal matrix for Winkler’s model 
(methods 2 and 3). Therefore, the total stiffness matrix for the plate and the soil is a banded matrix. 
Then, the system of linear equations (1.14) is solved by Banded coefficients-technique. Since the 



Models for analyzing piled raft 
 

 

1-12 

total stiffness matrix is a banded matrix, the equation solver (1.14) takes short computation time by 
applying these methods (2) and (3). 
 
The unknown variables in Eq. (1.14) are the nodal displacements wi (wi =si) and the nodal rotations 
θxi and θyi about x- and y-directions. After solving the system of linear equation (1.14), substituting 
the obtained settlements si in Eq. (1.10), gives the unknown contact forces and pile reactions Qi. 

1.2.3 Modulus of compressibility method - Continuum model (methods 4 to 9) 

Continuum model was first proposed by Ohde (1942), which based on the settlement will occur not 
only under the loaded area but also outside. Otherwise, the settlement at any nodal point is affected 
by the forces at all the other nodal points.  Figure 1-4 shows Continuum model applied for pile 
foundation according to Liang/ Chen (2004).  

Continuum model assumes continuum behavior of the soil, where the soil is represented as isotropic 
elastic half-space medium or layered medium. Consequently, this model overcomes the assumption 
of Winkler’s model, which does not take into account the interaction between the different points of 
the soil medium. Representation of soil as a continuum medium is more accurate as it realized the 
interaction among the different points of the continuum medium. However, it needs mathematical 
analysis that is more complex. 

 
Figure 1-4 Continuum model after Liang/ Chen (2004) 

1.2.3.1 Methods for analyzing piled raft for Continuum model 

The behavior of the pile-soil system can be examined by considering linearly or nonlinearly analysis 
according to the following three different methods 

• Linear analysis of piled raft, termed LPR 
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• Nonlinear analysis of  piled raft using hyperbolic function, termed NPRH. 
• Nonlinear analysis of piled raft using DIN 4014, termed NPRD.    

The next chapters describe methods for analyzing piled raft for Continuum model. 
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1.3 Numerical Example:  
The numerical modeling described in this chapter was implemented in the program ELPLA. To 
verify and evaluate the numerical modeling, a comparison was carried out in which results from 
ELPLA were compared with those from existing methods of analysis.   

1.3.1 Test example: Verifying forces in piles of a pile group 

1.3.1.1 Description of the problem 

 
To verify the mathematical model of ELPLA for determining pile forces of pile groups under a pile 
cap, results of a pile group obtained by Bakhoum (1992) (Example 5.19, page 592) are compared 
with those obtained by ELPLA. 
 
A pile cap on 24 vertical piles is considered as shown in  Figure 1-5. It is required to determine the 
force in each pile of the group due to a vertical load of N = 8000 [kN] acting on the pile cap with 
eccentricities ex = 1.4 [m] and ey = 1.8 [m] in both x- and y-directions. 

 

3.8  

P = 8000 [kN]

1.6*4 = 6.4 [m]

o

y

x

1.21.4

 
Figure 1-5 Pile cap dimensions and pile arrangements 
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1.3.1.2 Hand calculation of pile forces 

According to Bakhoum (1992), the force in each pile in the pile group can be obtained by hand 
calculation as follows: 
 
Step 1: Compute moments: 
 

 M

 *  = M

y

x

]m.kN[ 11200 = 1.4 * 8000 = 
 

]m.kN[ 144008.18000 =
                                              (1.15) 

 
Step 2: Compute properties Ix, Iy and Ixy: 

Determining properties of Ix, Iy and Ixy are listed in  Table 1-2. 
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Table 1-2 Properties Ix, Iy and Ixy 
 
Pile 
number 

 
xi 

[m] 

 
yi 

[m] 

 
xi

2 
[m2] 

 
yi

2 
[m2] 

 
xi yi 
[m2] 

 
1 

 
-3.8 

 
-3.4 

 
14.44 

 
11.56 

 
12.92 

 
2 

 
-2.2 

 
-3.4 

 
4.84 

 
11.56 

 
7.48 

 
3 

 
-0.6 

 
-3.4 

 
0.36 

 
11.56 

 
2.04 

 
4 

 
1.0 

 
-3.4 

 
1.00 

 
11.56 

 
-3.40 

 
5 

 
2.6 

 
-3.4 

 
6.76 

 
11.56 

 
-8.84 

 
6 

 
-3.8 

 
-1.8 

 
14.44 

 
3.24 

 
6.84 

 
7 

 
-2.2 

 
-1.8 

 
4.84 

 
3.24 

 
3.96 

 
8 

 
-0.6 

 
-1.8 

 
0.36 

 
3.24 

 
1.08 

 
9 

 
1.0 

 
-1.8 

 
1.00 

 
3.24 

 
-1.08 

 
10 

 
2.6 

 
-1.8 

 
6.76 

 
3.24 

 
-4.68 

 
11 

 
-3.8 

 
-0.2 

 
14.44 

 
0.04 

 
0.76 

 
12 

 
-2.2 

 
-0.2 

 
4.84 

 
0.04 

 
0.44 

 
13 

 
-0.6 

 
-0.2 

 
0.36 

 
0.04 

 
0.12 

 
14 

 
1.0 

 
-0.2 

 
1.00 

 
0.04 

 
-0.20 

 
15 

 
2.6 

 
-0.2 

 
6.76 

 
0.04 

 
-0.52 

 
16 

 
-0.6 

 
1.4 

 
0.36 

 
1.96 

 
-0.84 

 
17 

 
1.0 

 
1.4 

 
1.00 

 
1.96 

 
1.40 

 
18 

 
2.6 

 
1.4 

 
6.76 

 
1.96 

 
3.64 

 
19 

 
-0.6 

 
3.0 

 
0.36 

 
9.00 

 
-1.80 

 
20 

 
1.0 

 
3.0 

 
1.00 

 
9.00 

 
3.00 

 
21 

 
2.6 

 
3.0 

 
6.76 

 
9.00 

 
7.80 

 
22 

 
-0.6 

 
4.6 

 
0.36 

 
21.16 

 
-2.76 

 
23 

 
1.0 

 
4.6 

 
1.00 

 
21.16 

 
4.60 

 
24 

 
2.6 

 
4.6 

 
6.76 

 
21.16 

 
11.96 

 
 

 
Iy = 106.56 

 
Ix = 170.56 

 
Ixy = 43.2 

 
Step 3: Compute pile force: 
 
The force Pi in any pile i at location (xi, yi) from the geometry centroid is obtained from: 
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 y  + x  + = P
 

y +x + = P

 

y 
I  I I

I M  I M + x 
I  I I

I M  I M + 
n
N = P

iii

iii

i
xy

2
yx

xyyyx
i

xy
2

yx

xyxxy
i

64.42178.988 333.333

(43.2)-06.56)(170.56)(1
.2)(11200)(43-6.56)(14400)(10

(43.2)-06.56)(170.56)(1
.2)(14400)(43-0.56)(11200)(17

24
8000

22

−

−

−

−

       (1.16) 

 
3 Pile forces by ELPLA 

The available method “Linear Contact pressure  (1)” in ELPLA is used to determine the force in each 
pile in the pile group. A net of equal square elements is chosen. Each element has a side of 1.6 [m]. 
The pile forces obtained by ELPLA are compared with those obtained by Bakhoum (1992) in  Table 
1-3. It is obviously from this table that pile forces obtained by ELPLA are equal to those obtained by 
hand calculation. 
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Table 1-3 Comparison of pile forces obtained by ELPLA and those of Bakhoum (1992) 
 

Pile 
number 

 
Bakhoum (1992) 

 
ELPLA 

Pi 
[kN] 

 
xi 

[m] 

 
yi 

[m] 

 
N/n 
[kN] 

 
78.988 xi 

[kN] 

 
64.421 yi 

[kN] 

 
Pi 

[kN] 
 

1 
 

-3.8 
 

-3.4 
 
333.33 

 
-300.16 

 
-219.03 

 
-185.86 

 
-185.85 

 
2 

 
-2.2 

 
-3.4 

 
333.33 

 
-173.77 

 
-219.03 

 
-59.47 

 
-59.47 

 
3 

 
-0.6 

 
-3.4 

 
333.33 

 
-47.39 

 
-219.03 

 
66.91 

 
66.91 

 
4 

 
1.0 

 
-3.4 

 
333.33 

 
78.99 

 
-219.03 

 
193.29 

 
193.29 

 
5 

 
2.6 

 
-3.4 

 
333.33 

 
205.37 

 
-219.03 

 
319.67 

 
319.67 

 
6 

 
-3.8 

 
-1.8 

 
333.33 

 
-300.16 

 
-115.96 

 
-82.79 

 
-82.78 

 
7 

 
-2.2 

 
-1.8 

 
333.33 

 
-173.77 

 
-115.96 

 
43.50 

 
43.60 

 
8 

 
-0.6 

 
-1.8 

 
333.33 

 
-47.39 

 
-115.96 

 
169.98 

 
169.98 

 
9 

 
1.0 

 
-1.8 

 
333.33 

 
78.99 

 
-115.96 

 
296.36 

 
296.36 

 
10 

 
2.6 

 
-1.8 

 
333.33 

 
205.37 

 
-115.96 

 
422.74 

 
422.72 

 
11 

 
-3.8 

 
-0.2 

 
333.33 

 
-300.16 

 
-12.88 

 
20.29 

 
20.29 

 
12 

 
-2.2 

 
-0.2 

 
333.33 

 
-173.77 

 
-12.88 

 
146.68 

 
146.67 

 
13 

 
-0.6 

 
-0.2 

 
333.33 

 
-47.39 

 
-12.88 

 
273.06 

 
273.06 

 
14 

 
1.0 

 
-0.2 

 
333.33 

 
78.99 

 
-12.88 

 
399.44 

 
399.44 

 
15 

 
2.6 

 
-0.2 

 
333.33 

 
205.37 

 
-12.88 

 
525.82 

 
525.82 

 
16 

 
-0.6 

 
1.4 

 
333.33 

 
-47.39 

 
90.19 

 
376.13 

 
376.13 

 
17 

 
1.0 

 
1.4 

 
333.33 

 
78.99 

 
90.19 

 
502.51 

 
502.51 

 
18 

 
2.6 

 
1.4 

 
333.33 

 
205.37 

 
90.19 

 
628.89 

 
628.89 

 
19 

 
-0.6 

 
3.0 

 
333.33 

 
-47.39 

 
193.26 

 
479.20 

 
479.20 

 
20 

 
1.0 

 
3.0 

 
333.33 

 
78.99 

 
193.26 

 
605.58 

 
605.59 

 
21 

 
2.6 

 
3.0 

 
333.33 

 
205.37 

 
193.26 

 
731.96 

 
731.97 

 
22 

 
-0.6 

 
4.6 

 
333.33 

 
-47.39 

 
296.34 

 
582.28 

 
582.28 

 
23 

 
1.0 

 
4.6 

 
333.33 

 
78.99 

 
296.34 

 
708.66 

 
708.66 

 
24 

 
2.6 

 
4.6 

 
333.33 

 
205.37 

 
296.34 

 
835.04 

 
835.04 
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Chapter 2 

2 Numerical modeling single pile, pile groups and piled raft 

2.1 Introduction 
Analyzing piled raft is a complex task because it is a three-dimensional problem including 
many capabilities. The main capabilities that must be considered in the analysis are: the 
interaction between all piled raft and soil elements; taking into account the actual loading and 
geometry of the piled raft; representing the soil by a real model and treating the problem as 
nonlinear analysis. Considering all these capabilities requires great experience and effort. 
Besides, such a problem requires long computational time where huge size soil matrix is 
required for a large piled raft due to discretized nodes along piles and under the raft. For these 
reasons many authors suggested simplified methods in recent years to reduce the size of 
analysis.  

Clancy & Randolph (1993) and (1994) developed the hybrid layer method to reduce the 
computing effort. Ta & Small (1997) approximated the surface displacement of the soil by a 
polynomial instead of generating flexibility factors, but the raft have to be square and of equal 
size. Russo (1998) presented an approximate numerical method for the analysis of piled raft 
where piles were modeled as interactive linear or non-linear springs. He used the interaction 
factor method and a preliminary BEM to model pile to pile interaction. Poulos (1999) 
described an approximate analysis for the response of a pile group. The analysis uses a 
simplified form of boundary element analysis to obtain single pile responses and interaction 
factors, and employs various simplifying assumptions to facilitate the computational process. 
Lee & Xiao (2001) presented a simplified analytical method for nonlinear analysis of the 
behavior of pile groups using a hyperbolic approach to describe the nonlinear relation 
between the shaft stress and displacement. They developed the method for pile groups under 
both rigid and flexible pile cap based on the load-transfer function. Kitiyodom & Matsumoto 
(2002) and (2003) developed a simplified method of numerical analysis of piled raft using a 
hybrid mode. Raft is modeled as thin plate, the piles as elastic beams and the soil as springs. 
Mendonça & Paiva (2003) presented BEM/ FEM formulation for the analysis of piled raft in 
which each pile is represented by a single element with three nodal points and the shear force 
along the shaft is approximated by a quadratic function. The soil is considered as half-space 
medium. Jeong et al. (2003) proposed a simple algorithm to analyze laterally loaded three-
dimensional pile groups using beam column method. Liang & Chen (2004) presented a 
modified variational approach for analyzing piled raft by a simplified analytical solution to 
evaluate the pile-soil interaction. They applied the approach on piled rigid and flexible rafts 
resting on homogeneous soil. Wong & Poulos (2005) developed approximations for the 
settlement interaction factors between dissimilar piles via an extensive parametric study. Lutz 
et al. (2006) presented a simple method to estimate the load settlement behavior of piled raft 
based on the theory of elasticity and solutions for calculation of ultimate limit state. Most of 
the simplified analyses carried out by the methods mentioned previously approximated the 
soil model. However, several methods are available for analyzing this complex problem by a 
full three-dimensional analysis but they are time consuming even for fast computers of today.  
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In standard methods of analyzing piled raft based on elasticity theory, the entire soil stiffness 
matrix of the piled raft is assembled due to all elements of piles and raft. Then, settlements of 
piled raft elements are obtained directly by solving the global equations. Based on elasticity 
theory El Gendy (2007) presented more efficient analysis of single pile, pile group and piled 
raft by using composed coefficient technique to reduce the size of entire soil stiffness matrix. 
In the technique, the pile is treated as a rigid member having a uniform settlement on its 
nodes. This assumption enables to assemble pile coefficients in composed coefficients. It can 
be easily modeling the nonlinear response of single pile, pile groups or piled raft. The 
composed coefficient technique makes the size of the soil stiffness matrix of the piled raft 
equivalent to that of the raft alone without piles. The proposed analysis reduces considerably 
the number of equations that need to be solved. Raft can be analyzed as flexible, rigid or 
elastic on continuum soil medium. The advantage of the analysis is that there is no 
approximation when generating the flexibility coefficients of the soil. In the analysis a full 
interaction among piled raft elements is taken into account by generating the entire flexibility 
matrix of the piled raft. Using the composed coefficient technique enables to apply the 
nonlinear response of the pile by a hyperbolic relation between the load and settlement of the 
pile. El Gendy (2007) introduced also a direct hyperbolic function for nonlinear analysis of a 
single pile. Besides, an iteration method is developed to solve the system of nonlinear 
equations of pile groups or piled raft. This chapter presents numerical modeling single pile, 
pile groups and piled raft according to El Gendy (2007). 
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2.2 Modeling single pile 
To carry out the analysis, a composed coefficient or modulus ks [kN/m] representing the 
linear soil stiffness of the pile is determined. The modulus ks is a parameter used in both 
linear and nonlinear analysis of the pile. It is defined as the ratio between the applied force on 
the pile head Ph [kN] and the pile settlement wo [m]. The modulus ks is not a soil constant, it 
depends on pile load, pile geometry and stratification of the soil. It is analogous to the 
modulus of subgrade reaction of the raft on Winkler’s soil medium (Winkler (1867)), which is 
the ratio between the average contact pressure and the settlement under the characteristic 
point on the raft. This section describes a method to obtain the modulus ks from the rigid 
analysis of the pile. 

2.2.1 Soil flexibility for single pile 
In the analysis, the pile is divided into a number of shaft elements with m nodes, each acted 
upon by a uniform shear stress qsj [kN/m2] and a circular base having a uniform stress qb 
[kN/m2] as shown in  Figure 2-1a. To carry out the analysis, pile shaft elements are 
represented by line elements as indicated in  Figure 2-1b. All stresses acting on shaft elements 
are replaced by a series of concentrated forces acting on line nodes. The shear force on node j 
may be expressed as: 
 

j
jj

oj qs
ll

rQs
2

 π2 1 += −                                                  (2.1) 

 
while the force on the pile base may be expressed as: 
 

qbrQb o
2 π=                                                          (2.2) 

 
where: 
j-1 and j  Node number of element j. 
Qsj  Shear force on node j, [kN]. 
Qb  Force on the base, [kN]. 
ro Radius of the pile, [m]. 
lj Length of the element j, [m]. 
 
To consider the interaction between the pile and soil, the soil is represented as layered 
medium or isotropic elastic half-space medium. Considering a typical node i as shown in 
 Figure 2-1b, the settlement si of the soil adjacent to the node i due to shear forces Qsj on all m 
nodes and due to the base force Qb is expressed as: 
 

Qb f + Qs f  = s b i,jj i,

m

j
i ∑

1=

                                                     (2.3) 

where: 
fi, j  Flexibility coefficient of node i due to a unit shear force on a node shaft j, [m/kN]. 
fi, b  Flexibility coefficient of node i due to a unit force on the base b, [m/kN]. 
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Figure 2-1 Pile geometry and elements 

As a special case of Eq. (2.3) and by changing the index i to b, the settlement of the base sb 
may be expressed as: 
 

Qb f + Qs f  = s b b,jj b,

m

j
b ∑

1=

                                                     (2.4) 

 
where: 
fb, j  Flexibility coefficient of the base b due to a unit shear force on a node shaft j, [m/kN]. 
fb, b  Flexibility coefficient of the base b due to a unit force on the base b, [m/kN]. 
 
Equations (2.3) and (2.4) for the settlement of the soil adjacent to all nodes of the pile may be 
rewritten in general form as: 
 

Q I  = w jj i,

n

j
i ∑

1=

                                                             (2.5) 

where: 
Qj  Contact force on node j, [kN]. Qj represents the shear forces Qsj on the shaft nodes or 

a base force Qb. 
wi  Settlement on node i, [m]. wi represents the settlement sj on a shaft node j or 
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settlement sb on the base. 
n Total number of contact nodes, n = m+1. 
Ii, j  Flexibility coefficient of node i due to a unit force on node j, [m/kN]. Ii, j represents the 

coefficient fi, j, fi, b, fb, j or fb, b. These coefficients can be evaluated from elastic theory 
using Mindlin’s solution. Closed form equations for these coefficients are described in 
the next paragraph. 

2.2.2 Determining flexibility coefficients 
In 1936 Raymond Mindlin presented a mathematical solution for determining stresses and 
displacements in soil due to a point load acting beneath the surface of semi-infinite mass. The 
solution is often employed in the numerical analysis of piled foundations and may have other 
applications in geotechnical Engineering such as study the interaction between foundations 
and ground anchors or buried structures. 

The pioneer authors of piled raft such as Poulos & Davis (1968) and Butterfield & Banerjee 
(1971) integrated numerically coefficients of flexibility using Mindlin’s solution (Mindlin 
(1936)). Analysis of piled raft using integrated numerical coefficients leads to significant 
computations, especially in large pile group problems. An analytical derivation of coefficients 
of flexibility using Mindlin’s solution is presented. 

2.2.2.1 Flexibility coefficient fi, b of a node i due to a unit force on the base b  
To avoid the significant computations when applying Mindlin’s solution to determine the 
flexibility coefficients for nodes located outside the base, circular load at the base is replaced 
by an equivalent point load. In this case the flexibility coefficient can be obtained directly 
from Mindlin’s solution for determining the displacement wij [m] at point i due to a point load 
Qj [kN] acting at point j beneath the surface of a semi-infinite mass ( Figure 2-2). According to 
Mindlin’s solution the displacement wij can be expressed as: 
 

Q f = w jijij                                                             (2.6) 

 
where fij is given by Mindlin’s solution as: 
 











R
c +z z  c  + 

R
czc +z  + 
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 = f

s

sss

ss
ij
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2

2

3
2

2
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1

2

2

2

1

)(62-)( )ν 4 - (3)(

)ν4 - (3 - )ν- (1 8ν4 - 3
)ν- (1 π16

1

                              (2.7) 

 
where: 

and ) + ( +  =   ,)( 22
2

22
1 czrRc -z  + r = R  

c Depth of the point load Qj [kN] from the surface, [m]. 
z  Depth of the studied point i from the surface, [m]. 
r  Radial distance between points i and j, [m]. 
z-c  Vertical distance between points i and j, [m]. 
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z+c  Vertical distance between points i and k, [m]. 
fij Displacement factor of point i due to a unit load at point j, [m/kN]. 
Gs Shear modulus of the soil, [kN/m2]. 

)ν+ (1 2 s

s
s  

E= G  

Es Modulus of elasticity of the soil, [kN/m2]. 
νs Poisson’s ratio of the soil, [-]. 

 
Figure 2-2 Geometry of Mindlin's problem 

Now, the flexibility coefficient fi, b [m/kN] of node i due to a unit force Qb = 1 [kN] acting on 
the base b is equal to the displacement factor fij. In Eq (2.7), r is the radial distance between 
the pile of points i and the pile of the base b. For the pile of the studied base b, r is equal to 
the radius of the base ro. 

2.2.2.2 Flexibility coefficient fb, b of the base b due to a unit force on the base itself 
The base b of the pile has a circular loaded area of radius ro [m] and a uniform load q = Qb / π 
ro

2  [kN/m2] as shown in  Figure 2-3. The flexibility coefficient fb, b [m/kN] at the base center b 
due to a unit load Qb = 1 [kN] at the base itself can be obtained from: 
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∫∫
or

ij
o

b b, d dr r f 
r 

 = f
0

2π

02
θ

π
1                                                 (2.8) 

 
The integration of the flexibility coefficient can be obtained analytically as: 
 

( [ ][ ]
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           (2.9) 

 
The flexibility coefficient fb, b may be multiplied by a factor π/4 to take the effect of base 
rigidity. This factor is the ratio of the surface displacement of a rigid circle on the surface of a 
half-space to the center displacement of a corresponding uniformly loaded circle. 
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Figure 2-3 Geometry of circular loaded area for finding displacement at center 

2.2.2.3 Flexibility coefficient fi, j of node i due to a unit shear force on a node shaft j 
To avoid the significant computations when applying Mindlin’s solution to determine the 
flexibility coefficients due to shaft stress, the shaft stress is replaced by an equivalent line 
load. The shaft element j of the pile has a length l [m] and a line load T = Qj / l [kN/m] as 
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shown in  Figure 2-4. The flexibility coefficient fi, j [m/kN] at the point i due to a unit load Qj = 
1 [kN] at a shaft element j can be obtained from: 

 

 dc f 
l
1 = f

l

l ijj i, ∫
2

1

                                                        (2.10) 

 
The integration yields to: 
 

( )I + I + I + I + I 
  G l 

 = f
ss

j i, 54321)ν- (1 π16
1                                   (2.11) 

 
where terms I1 to I5 are given by: 
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where: 
l1  Start depth of the line load T or the shear stress τ from the surface, [m]. 
l2  End depth of the line load T or the shear stress τ from the surface, [m]. 
l  Length of the line load T or the shear stress τ, [m]. 
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r1  Radial distance between point i and j [m]. 
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Figure 2-4 Geometry of line load 

2.2.2.4 Flexibility coefficient fb, j of the base b due to a unit shear force on a node shaft j 
The base b of the pile has a radius ro [m], while the shaft element j has a length l [m] and a 
shear stress τ = Qj / 2 π ro l  [kN/m2] as shown in  Figure 2-5. The flexibility coefficient fb, j 
[m/kN] at the base center b due to a unit load Qj = 1 [kN] at a shaft element j can be obtained 
from: 

 

∫∫
2

1

θ
 π2

2π

0

l

l ijj b, d dc f 
l 

1 = f                                             (2.17) 

 
The integration yields to: 

 

( )J + J + J + J + J 
  G l 

= f
ss

j b, 54321)ν- (1 π16
1                                 (2.18) 

 
Replacing r1 by ro in Eqns (2.12) to (2.16) gives terms J1 to J5. 
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Figure 2-5 Geometry of cylindrical surface stress for finding the displacement at center 

2.2.2.5 Multi-layered soil 
Flexibility coefficients described previously can be applied only for isotropic elastic half-
space soil medium. For finite layer, flexibility coefficients may be obtained as described by 
Poulos & Davis (1968). As an example, for a point k in a layer of depth h, the flexibility 
coefficient is then: 
 

( ) ( ) ( )∞∞ f - f = hf j h,j k,j k,                           (2.19) 
where: 
fk, j(h) Flexibility coefficient for a point k in a layer of depth h due to a unit load on point j, 

[m/kN]. 
fk, j(∞) Flexibility coefficient for a point k due to a unit load on point j, in a semi-infinite 

mass, [m/kN]. 
fh, j(∞) Flexibility coefficient for a point within the semi-infinite mass directly beneath k, at a 

depth h below the surface due to a unit load on point j, [m/kN]. 

2.2.3 Elastic analysis of single pile 

2.2.3.1 Soil settlement 
Equation (2.5) for settlements of the soil adjacent to all nodes of the pile may be written in a 
matrix form as: 

                      { } [ ]{ }Q Is = w                                                           (2.20) 
where: 
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{w} n settlement vector. 
{Q} n contact force vector. 
[Is] n*n soil flexibility matrix. 
 
Inverting the soil flexibility matrix in Eq. (2.20), leads to: 
 

                      { } [ ]{ }w ks = Q                                                           (2.21) 
 
where [ks] is n*n soil stiffness matrix, [ks] = [Is]-1. 
 
Equation (2.21) may be modified as: 
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                                  (2.22) 

 
Equation (2.22) is rewritten in a compacted matrix form as: 
 

                      { } [ ]{ }s ke = Qs                                                            (2.23) 
 
 
where: 
{s} n+1 settlement vector, {s}={o, s1, s2, s3,…, sn, sb}T. 
{Qs} n+1vector of contact forces on the pile, {Q}={o, Qs1, Qs2, Qs3,…, Qsn, Qb}T. 
 [ke]  n+1* n+1 soil stiffness matrix. 
 

2.2.3.2 Pile displacement 
The finite element method is used for analyzing the pile. Only the axial compression of the 
pile is considered in determining displacements of pile elements. The beam stiffness matrix of 
the pile element i can be expressed as: 
 

                      [ ]   
l

ApEp
= kp

i

i
i 








−

−⋅
11
11

                                                (2.24) 

 
where: 
Ep Modulus of Elasticity of the pile material, [kN/m2]. 
Api Cross-section area of the pile element i, [m2]. 
li Length of the pile element i, [m]. 
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According to the principal of the finite element method, the assembled axial stiffness matrix 
equation for the pile can be written as: 
 

                      [ ]{ } { } { }Qs P = kp −δ                                                        (2.25) 
 
where: 
{δ} n+1 Displacement vector. 
{P} n+1 vector of applied load on the pile, {P}={Ph, o, o, o,…, o}T. 
 [kp] n+1*n+1 beam stiffness matrix. 
 
Substituting Eq. (2.23) in Eq (2.25), leads to: 
 

                      [ ]{ } { } { }ske P = kp ][δ −                                                       (2.26) 
 
Assuming full compatibility between pile displacement δi and soil settlement si, the following 
equation can be obtained: 
 

                      [ ] [ ][ ]{ } { }P = kekp δ+                                                        (2.27) 
 
Solving the above system of linear equations, gives the displacement at each node, which 
equal to the soil settlement at that node. Substituting soil settlements from Eq. (2.27) in Eq. 
(2.23), gives contact forces on the pile. 

2.2.4 Rigid analysis of single pile 
 
For a rigid pile, the settlement will be uniform. Therefore, the unknowns of the problem are n 
contact forces Qj and the rigid body translation wo. The derivation of the uniform settlement 
for the rigid pile can be carried out by equating the settlement wi in Eq. (2.5) by a uniform 
translation wo at all nodes on the pile. Expanding Eq. (2.5) for all nodes yields to: 
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Contact forces can be written as a function in terms ki, j of the soil stiffness matrix [ks] as: 
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                                  (2.29) 

 
Carrying out the summation of all contact forces leads to: 
 

k woQ j i,

n

j=

n

=i
i

n

=i

  = ∑∑∑
111

                                                     (2.30) 

 
Equation (2.30) may be rewritten as: 
 

 woks = Ph                                                                      (2.31) 
 
where the applied force Ph [kN] is the sum of all contact forces Qi: 
 

Q = Ph i

n

i
∑

1=

                                                               (2.32) 

 
while the composed coefficient ks [kN/m] is the sum of all coefficients of the soil stiffness 
matrix [ks]:  
 

k  = ks j i,

n

j=

n

=i
∑∑

11

                                                            (2.33) 

 
Equation (2.31) gives the linear relation between the applied load on the pile head and the 
uniform settlement wo, which is analogous to Hook’s law. Therefore, the composed 
coefficient ks may be used to determine the total soil stiffness adjacent to the pile. In case of 
analysis of a single pile, it is easy to determine the contact forces Qi. Substituting the value of 
wo from Eq. (2.31) in Eq. (2.29) gives Eq. (2.34) in n unknown contact forces Qi as: 
 

ks

k Ph
 = Q

j i,

n

j=
i

∑
1                                                              (2.34) 

 
Equation (2.34) of contact forces on the rigid pile is found to be independent on the Modulus 
of elasticity of the soil Es in case of isotropic elastic half-space soil medium. 
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2.3 Modeling pile groups (freestanding rigid raft) 
The composed coefficient technique is first used to perform a linear analysis of pile groups. 
Then it is extended to include the nonlinearity effect. The next paragraphs present the 
formulation of composed coefficients for pile groups to generate a soil stiffness matrix of 
composed coefficients. 

2.3.1 Soil stiffness for pile groups 
Deriving equations for freestanding raft on piles requires taking into account the interaction 
effect among the pile groups. For doing that, the simple freestanding raft on pile groups 
shown in  Figure 2-6 as an example is considered, which having np = 4 piles and total nodes of 
n = 23.  
 
The relation between pile settlement and contact force on pile groups shown in  Figure 2-6 can 
be expressed in matrix form as: 
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(2.35) 
 
Inverting the total flexibility matrix in Eq. (2.35), gives the total soil stiffness matrix of the 
system of the pile groups as: 
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                                                            (2.36) 

where ki, j is stiffness coefficient of the soil stiffness matrix, [kN/ m]. 
 
Due to the high rigidity of the pile in its length direction, the settlement in every pile itself is 
considered as a uniform. This assumption can establish the relationship between the uniform 
pile settlement and the force on the pile head in the pile groups. It can be done by equating all 
settlements in each pile by a uniform settlement. 

Carrying out the summation of rows and columns corresponding to the pile i in Eq. (2.36) 
leads to: 
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Figure 2-6 Modeling freestanding raft on pile groups 
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Accordingly, Eq. (2.37) can be rewritten for the simple pile groups in  Figure 2-6 in composed 
coefficients as: 
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where: 
woi  Settlement in pile i, [m]. 

Ki, j  Composed coefficient, [kN/m]. In general ∑ ∑
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2.3.2 Analysis of pile groups 
In general case of a completely rigid raft, the linear settlement of the raft at any point is 
defined by the vertical displacement wc of the center and by two rotations θx and θy about x-
and y-axes, respectively. The settlement of the pile i, having coordinates xi and yi referred to 
the center, must be compatible with the raft settlement at that point. Determining values of 
displacement wc and rotations θx and θy, allows to find the unknown pile head forces and 
settlements.  

2.3.2.1 Case of uniform settlement (ex = 0 and ey = 0)  
For a free-standing raft with a centric load, the settlement will be uniform. Therefore, 
unknowns of the problem are reduced to np pile head forces Phi and the rigid body translation 
wc on all piles. The derivation of the uniform settlement for the rigid free-standing raft can be 
carried out by equating the settlement woi by a uniform translation wc at all piles in the pile 
groups. Expanding Eq. (2.38) for all piles, yields to:  
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Carrying out the summation of all forces on pile heads, leads to: 
 

K wcPh j i,

n

1=j

n

1=i
i

n

1=i

ppp

  = ∑∑∑                                                  (2.40) 

 
Equation (2.40) may be rewritten in a simple form as: 
 

 wcKs = N                                                             (2.41) 
 
where the resultant force N is the sum of all forces Phi on pile heads: 
 

Ph = N i

n

1=i

p

∑                                                             (2.42) 

 
while the modulus Ks is the sum of all terms Ki, j: 
 

K  = Ks j i,

n

1=j

n

1=i

pp

∑∑                                                             (2.43) 

 
Equation (2.41) gives the linear relation between the applied resultant force N on the pile 
groups and the uniform settlement wc, which is analogous to Hook’s low. The modulus Ks is 
the total soil stiffness of the pile groups. 
 
Substituting the value of wc in Eq. (2.39), gives Eq. (2.44) in np unknown pile head forces 
Phi. 
 

K  wc= Ph j i,

n

1=j
i

p

∑                                                             (2.44) 

 
Equation (2.44) represents the linear relation between the force on the pile head and its 
settlement in the pile groups, it can be rewritten in a simplified form as: 
 

 wcks = Ph ii                                                             (2.45) 

where ksi is the Modulus of soil stiffness adjacent to the pile i in the pile groups, [kN/m]. It is 
given by: 

K = ks j i,

n

j=1
i

p

∑                                                             (2.46) 

2.3.2.2 Case of single eccentric load (ex  ≠  0) 
Due to the raft rigidity, the following linear relation expresses the settlement woi at a pile i 
that has a distance xi from the geometry centroid in the case of single eccentric load in x-axis: 
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θtan yii   x +  wc= wo                                                       (2.47) 

 
where θy [Rad] is the rotation angle of the raft about y-axis. 
 
Similarly to the procedures of derivation wc, the expansion of forces on pile heads in Eq. 
(2.39) becomes:  
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                     (2.48) 

 
Multiplying both sides of a row i in Eq. (2.48) by xi, gives the following system of linear 
equations: 
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To eliminate the contact forces from Eq. (2.49), carrying out the summation of all Phi xi as 
follows: 
 

wo K x xPh jj i,

n

j=1
i

n

=1i
ii

n

=1i

ppp

 =  ∑∑∑                                              (2.50) 

Substituting Eq. (2.47) in Eq. (2.50), gives:   
 

( )θtan yjj i,

n

j=1
i

n

=1i
ii

n

=1i

  x + wc K x xPh
ppp

 =  ∑∑∑                                    (2.51) 

 
But the moment due to resultant N about the y-axis must be equal to the sum of moments due 
to forces on pile heads Phi about that axis: 
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xPh = x Ph +...+ x Ph + x Ph + x Ph = e N ii

n

=1i
nn332211x  

p

pp ∑                       (2.52) 

 
Substituting Eq. (2.51) in Eq. (2.52), eliminates the forces on pile heads from Eq. (2.52) and 
gives the rigid rotation θy about y-axis from: 
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θtan                                             (2.53) 

 
Substituting the value of tan θy in Eq. (2.47), gives the np unknown settlements woi. Then, 
substituting the value of woi in Eq. (2.48), gives the np unknown forces on pile heads Phi: 
 

K x    + K  wc= Ph j i,i

n

j=1
yj i,
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j=1
i

pp

∑∑ θtan                                          (2.54) 

 
The stiffness ksi of the soil adjacent to the pile i in the pile groups is given by: 

θtan yi

i
i   x + wc

Ph = ks                                                     (2.55) 

2.3.2.3 Case of single eccentric load (ey  ≠  0) 
The settlement woi at pile i that has a distance yi from the geometry centroid in the case of 
single eccentric load in y-axis is given by: 
 

θtan xii   y +  wc= wo                                                     (2.56) 
 
The derivation of the free-standing rigid raft in the case of an eccentric load in y-axis can be 
carried out in a similar manner to the above procedures, which leads to the following Eq. 
(2.57) in the rotation θx about x-axis:   
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while the force on the pile head is given by:  
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and the soil stiffness ksi adjacent to the pile i in the pile groups is given by: 
 

θtan xi

i
i   y + wc

Ph = ks                                                     (2.59) 

General case of double eccentric load (ex  ≠  0 and ey ≠  0) 

The settlement woi in the general case of an eccentric load at any pile i that has coordinates xi 
and yi from the geometry centroid is given by: 
 

θtanθtan xiyii   y +   x +  wc= wo                                           (2.60) 
 
while the force on the pile head is given by:  
 

K y    + K x    + K  wc= Ph j i,i

n
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xj i,i

n
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yj i,

n

j=1
i

ppp

∑∑∑ θtanθtan                            (2.61) 

and the soil stiffness ksi adjacent to the pile i in the pile groups is given by: 
 

θtanθtan xiyi

i
i   y +   x + wc

Ph = ks                                              (2.62) 

 
Once settlements woi on piles are determined, the contact forces along the pile shaft and on 
the pile base can be obtained from Eq. (2.35). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Chapter 2 
 

 

 2-25 

2.4 Modeling piled raft 

2.4.1 Soil stiffness for piled raft 
For a complete analysis of piled raft foundation, pile-soil-raft and raft-soil-raft interactions 
must be taken into account in addition to pile-soil-pile interaction. To illustrate how to 
formulate the composed coefficient technique for piled raft, the simple piled raft shown in 
 Figure 2-7 is considered, which having np = 4 piles and a total npr = 33 contact nodes of raft 
and piles with the soil. If the raft is analyzed alone without piles, the number of its nodes will 
be nr = 14. In the analysis, the contact area is divided for the raft into triangular and/or 
rectangular elements, while that for pile shafts into cylindrical elements and that for pile bases 
into circular elements. The contact pressure under the raft, on pile shafts or on pile bases is 
represented by a series of contact forces on nodes. For the set of 33 nodes of the piled raft, the 
relation between soil settlements and contact forces is expressed as: 
 

















































































































































































































33

216

11

10

9

18

3

2

1

33,3316,3311,3310,339,338,333,332,331,33

33,1616,1611,1610,169,168,163,162,161,16

33,1116,1111,1110,119,118,113,112,111,11

33,1016,1011,1010,109,108,103,102,101,10

33,916,911,910,99,98,93,92,91,9

33,816,811,810,89,88,83,82,81,8

33,316,311,310,39,38,33,32,31,3

33,216,211,210,29,28,23,22,21,2

33,116,111,110,19,18,13,12,11 1,

33

216

11

10

9

18

3

2

1

..

...

...

.........
....................................

.........
....................................

.........

.........

.........

.........
....................................

.........

.........

.........

..

...

...

Q

Q

Q
Q
Q

Q

Q
Q
Q

IIIIIIIII

IIIIIIIII

IIIIIIIII
IIIIIIIII
IIIIIIIII
IIIIIIIII

IIIIIIIII
IIIIIIIII
IIIIIIIII

= 

w

w

w
w
w

w

w
w
w

p

p

         

         

         

         

         

         

         

         

        

p

p

(2.63) 
where p1, p2, … are number of the piles. 
 
The total flexibility matrix in Eq. (2.63) can be inverted to give the relationship between 
contact forces and nodal settlements as follows: 
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 (2.64) 
 
As indicated before, equating settlements of all nodes on each pile by a uniform settlement 
and carrying out the summation of rows and columns related to that pile in Eq. (2.64), gives 
the composed coefficients with the force on the pile head Phi and its corresponding settlement 
woi as follows: 
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Figure 2-7 Modeling piled raft 
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Accordingly, the total stiffness matrix of the piled raft of size [npr *npr] is reduced to the size 
[nr *nr]. It means that the composed coefficient technique makes the size of the soil stiffness 
matrix of the piled raft problem equivalent to that of the raft problem alone without piles. 
 
Now, Eq. (2.65) can be rewritten in composed coefficients as: 
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         (2.66)                                            

 
where Kpi, pj, Ki, pj and Kpi, j are composed coefficients of the piled raft, [kN/m]. 
 
Based on Eq. (2.66), the relationship between settlements and contact forces of the piled raft 
can be written in general compacted matrix form as: 
 

                      { } [ ]{ }w kb = Q                                                           (2.67) 
where: 
{w} nr settlement vector. 
{Q} nr contact force vector. 
[kb] nr*nr soil stiffness matrix of the piled raft. 
 
For simplicity of the formulation, in next paragraphs the settlement on either raft node or pile 
head is donated by wi, while the contact force on either raft node or pile head is donated by Qi.  

2.4.2 Analysis of piled flexible raft 
In case of analyzing full flexible raft, the contact force vector {Q} on raft nodes is known. 
Only settlements are required. The advantage of the composed coefficient technique is that 
the composed soil stiffness matrix can be inverted to get a composed flexibility matrix.  
 
Accordingly, a relationship between contact forces under the flexible raft besides forces on 
pile heads and nodal settlements is expressed as: 
 

 { } [ ]{ }Q Cb = w                                                          (2.68) 
where [Cb] is nr*nr flexibility matrix of the piled raft, [Cb]=[kb]-1. 
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2.4.3 Analysis of piled rigid raft 
For piled rigid raft, unknowns of the interaction problem are nr contact forces Qi, the rigid 
body translation of the piled raft wc, and the rigid body rotations θx and θy of the piled raft 
about axes of geometry centroid. These are determined by considering nr compatibility 
equations of rigid piled raft deflection and the displacement of subsoil at nr nodal points in 
addition to the three equations of overall equilibrium.  
 
Due to the piled raft rigidity, the following linear relation (plane translation) expresses the 
settlement wi at either a node in the raft or a pile that has coordinates (xi, yi) from the 
geometry centroid: 
 

  y +   x +  wc= w xiyii θtanθtan                                              (2.69) 
 
Equation (2.69) is rewritten in matrix form for the entire piled raft system as: 
 

{ } [ ] { }∆ X = w T                                                          (2.70) 
 
where: 
{Δ} 3 vector of translation wc and rotations tan θy and tan θx  
[X]T 3*nr matrix of {1, xi, yi }. xi, yi are coordinates of node i. 
 
For equilibrium the following conditions must be satisfied: 

- The resultant due to external vertical forces acting on the raft must be equal to the sum 
of contact forces and pile loads.  

- The moment due to that resultant about either x-axis or y-axis must be equal to the sum of 
moments due to contact forces and pile loads about that axis. 

 
Assuming Qi is a symbol represents either pile load Phi or contact force Qi on the mesh, gives: 
 










y . Q + ... + y . Q + y . Q + y . Q = e . N

x . Q + ... + x . Q + x . Q + x . Q = e . N

Q + ... + Q + Q + Q = N

nn332211y

nn332211x

n321

                              (2.71) 

 
where: 
N  Resultant of applied loads acting on the raft, [kN]. 
N ex  Moment due to resultant about x-axis, Mx = N ex, [kN.m]. 
N ey Moment due to resultant about y-axis, My = N ey, [kN.m]. 
ex, ey  Eccentricities of the resultant about x- and y-axes, [m]. 
xi, yi  Coordinates of the load Qi, [m]. 
 
Equation (2.71) is rewritten for the entire piled raft foundation in matrix form as: 
 

{ } [ ]{ }Q X = N                                                          (2.72) 
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where: 
{N} 3 vector of resultant and moments of applied loads acting on the piled raft. 
 
Substituting Eqns (2.67) and (2.70) in Eq. (2.72), gives the following linear system of 
equations of the piled rigid raft: 
 

{ } [ ][ ][ ] { }∆ X kb X = N T                                                      (2.73) 
 
Solving the above system of linear equations, gives wc, tan θx, and tan θy. Substituting these 
values in Eq. (2.70), gives the n settlements.  
 
Substituting Eq. (2.70) in Eq. (2.67), gives the following equation to find the n unknown pile 
loads and contact forces. 
 

{ } [ ][ ] { }∆ X kb = Q T                                                          (2.74) 

2.4.4 Analysis of piled elastic raft 
It is possible to treat the raft as an elastic plate on rigid piles. From the finite element analysis 
of the plate, the equilibrium of the raft is expressed as:  
 

{ } { } { }Q - P =  kr δ][                                                       (2.75) 
 
where:  
{p} 3*nr vector of applied loads and moments on the raft nodes. 
[kr]  3 nr*3 nr plate stiffness matrix. 
{δ} 3*nr deformation vector of the raft. 
 
In the case of analyzing an elastic raft on pile groups, the elastic shortening of the pile may be 
added to the pile settlement in Eq. (2.68). The elastic shortening of the pile i is expressed as: 
 

Ap Ep
l Ph = 

ii

ii
i∆                                                              (2.76) 

 
where: 
Δi Elastic shortening of pile i, [m]. 
li Length of pile i, [m]. 
Api Cross-section area of pile i, [m2]. 
Epi Modulus of elasticity of the material of pile i, [kN/m2]. 
 
Equation (2.76) is written for the entire piled raft in matrix form as:  
 

{ } [ ]{ }Ph Cp = wp                                                         (2.77) 
 
where: 
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{wp} Elastic shortening vector.  
[Cp] Elastic pile matrix, which is a diagonal matrix.  
{Ph} Vector of forces on pile heads.  
 
To take the effect of pile shortening into account, the elastic coefficient of the pile i in the 
matrix [Cp] is added to the flexibility coefficient of that pile in the matrix [Cb] in Eq. (2.68) 
as follows: 
 

{ } [ ] [ ][ ]{ }Q  Cp + Cb  = w                                                      (2.78) 
 
Inverting the total flexibility matrix [[Cb]+[Cp]] gives also the total stiffness matrix of piled 
raft [kp] with the effect of pile stiffness due to its elastic material. 
 

{ } [ ]{ }w kp = Q                                                             (2.79) 
 
where [kp] is nr*nr stiffness matrix of the piled raft with the effect of pile elastic material, 
[kp]=[[Cb]+[Cp]]-1.  
 
Substituting Eq. (2.79) in Eq (2.75), leads to: 
 

                      [ ]{ } { } { }wkp P = kr ][δ −                                                 (2.80) 
 
Considering compatibility between piled raft displacement δi and soil settlement si, the 
following linear system of equations of the piled elastic raft can be obtained: 
 

[ ] [ ][ ]{ } { }P =   kr + kp δ                                                  (2.81) 
 
Solving the above system of linear equations, gives the displacement at each node of the raft, 
which equal to the soil settlement at that node. Substituting soil settlements from Eq. (2.81) in 
Eq. (2.66), gives contact forces on the raft and forces on pile heads. 
 
Once settlements on piles woi are determined in the above three cases of piled rafts, the 
individual forces along the pile shaft and on the pile base can be obtained from Eq. (2.64). 

2.5 Nonlinear analysis 

2.5.1 Nonlinear rigid analysis of single pile 
Nonlinear analysis is an important consideration since piles may be loaded close to their full 
capacity, even under working condition. The nonlinear relation between the load and 
settlement of pile may be determined by considering a hyperbolic relation between load and 
settlement.  Figure 2-8 shows a typical nonlinear curve of load-settlement for a wide range of 
soils. The curve can be approximated through a hyperbolic interpolation formula where 
several equation forms are available to verify this curve.  
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Figure 2-8 Load-settlement curve of a single pile (hyperbolic relation) 

Many methods were developed to study pile-soil systems with nonlinear response using a 
hyperbolic relation between the load and settlement. Fleming (1992) developed a method to 
analyze and predict load-deformation behavior of a single pile using two hyperbolic functions 
describing the shaft and base performance individually under applied load. Analyzing 
nonlinear behavior by hyperbolic function was used by Mandolini & Viggiani (1997) for pile 
groups and was used by Russo (1998) for piled raft. They considerd piles as nonlinear 
interacting springs based on the method of interaction factors. Basile (1999) assumed soil 
Young’s modulus varies with the stress level at the pile-soil interface using a hyperbolic 
stress-strain relationship.  
 
Available nonlinear analysis of foundation on Winkler’s soil medium was presented by Baz 
(1987) for grid and Hasnien (1993) for raft. El Gendy (1999) extended this analysis to be 
applicable for raft on continuum soil medium. The composed coefficient technique described 
in the previous sections enables to apply this analysis on pile problems.  
 
The nonlinear behavior of the pile head force-settlement at the piled raft-soil interface may be 
represented as: 

Ql
wn + 

ks

wn = Ph
1

                                                           (2.82) 

where: 
wn Nonlinear settlement of the pile, [m]. 
Ql  Limit pile load, [kN]. 
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In  Figure 2-8 and Eq. (2.82), the initial tangent modulus for single pile is easily obtained from 
linear analysis of the pile, which is equal to the modulus of soil stiffness ks. The limit pile 
load Ql is a geometrical parameter of the hyperbolic relation. In some cases the value of Ql is 
different from the actual ultimate pile load. For a single pile, the force on the pile head Ph is 
known. Therefore, Eq. (2.82) gives directly the nonlinear settlement of the pile wn. 

2.5.2 Nonlinear analysis of pile groups, elastic piled raft and rigid piled raft 
The nonlinear analysis of the piled raft is also based on the hyperbolic relation presented in 
section 2.5.1.  The initial tangent modulus of the hyperbolic relation may be obtained from the 
linear analysis of the piled raft as: 
 

o
i

o
i

i wo
Ph

= ks                                                              (2.83) 

 
where: 
Phi

o Force on the pile head obtained from the linear analysis, [kN]. 
woi

o  Pile settlement obtained from the linear analysis, [m]. 
i Pile number. 
o Index denotes to the first analysis in the iteration (linear analysis). 

2.5.3 Iterative Procedure 
An iteration method is presented to solve the system of nonlinear equations of the piled raft. 
The main idea of this method is that the stiffness matrix [kb] for rigid raft or [kp] for elastic 
raft is converted to a diagonal stiffness matrix [ke]. Stiffness coefficients of this matrix, which 
represent nodal raft stiffness and pile stiffness coefficients, are determined from the contact 
force and its corresponding settlement. Only the pile stiffness is modified at each cycle from 
the iteration process. Using the equivalent diagonal matrix, equations of the piled raft are 
solved for each iteration cycle until the compatibility between raft, piles and soil is achieved. 
 
 Figure 2-9 shows the iteration cycle and the flow chart of the iteration process. The iteration 
process can be described in the following steps: 
 

1- Carry out the linear analysis of the piled raft by solving system of linear Eqns 
(2.73) or (2.81) whichever is applicable, to get the settlements {w}. 

2- Find the nodal contact forces {Q} due to the computed settlements from Eq. 
(2.74) for rigid raft and from Eq. (2.79) for elastic raft. 

3- From the computed settlements and contact forces, determine the nodal 
stiffness at all nodes on the raft and on pile heads from: 

i

i
i w

Q
= ke                                                            (2.84) 

4- Modify the pile stiffness by: 
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Ql
w

 + 
ks

 = ke

i

i

i

i 1
1                                                      (2.85) 

 
5- Convert the soil stiffness matrix (matrix [kb] or matrix [kp]) to equivalent 

diagonal stiffness matrix [ke]. This matrix can be generated from nodal raft 
stiffness computed in step 3 and pile stiffness computed in step 4.  

6-  Replace the full matrix by diagonal matrix [ke]. Then, carry out the nonlinear 
analysis of the piled raft to get the settlements {w}. 

7- Compute the contact force under the raft and force on pile head by: 
 

iii wke = Q                                                          (2.86) 
  
8 -  Compare the settlement from cycle i with that of cycle i-1 to find the accuracy 

of the solution. 
 
The steps 3 to 8 are repeated until the accuracy reaches a specified tolerance ε, which means 
that a sufficient compatibility between settlements of piles, raft and soil are achieved at the 
piles-raft-soil interface. However, in this analysis the nonlinear response is applied only on 
piles, it can be easily added the nonlinear response of the raft as indicated by El Gendy (1999) 
to the piled raft system. 
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Carry out the linear analysis 
Eq.  (2.73) or Eq.  (2.81)

to get {w}

Start

l=0

l = Iteration cycle No.

Finde the nodal contact forces{Q}
from Eq.  (2.74) or Eq.  (2.79)

Modify the pile stiffness

Determine the nodal stiffness at all nodes
kei = Qi / wi

End

No

Yes

l=l+1

Convergence
satisfied

{}=2{w}l-{w}l-12

Find the vector {}of the 
rigid body translation and 

rotations about x-and y-axes
{N}=[Xs][ke][Xs]T{}

Yes

Find the vector {}from FE-Method
[[ke]+[kr]]{}={P}

No

Rigid raft

Generate the stiffness matrix [ke]

1       wi
kei = 

ksi     Qli

1

Compute
contact forces

Qi = kei wi

 
Figure 2-9 Flow chart of the iteration process 
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2.6 Numerical Examples 
The numerical modeling single pile, pile groups and piled raft described in this chapter was 
implemented in the program ELPLA. To verify and evaluate the numerical modeling, a series 
of comparison were carried out in which results from ELPLA were compared with those from 
existing methods of analysis.   

2.6.1 Test Example: Evaluation of settlement influence factor I1 for a single pile  
Most of piled raft analyses apply a numerical integration using Mindlin’s solution to 
determine flexibility coefficients of piles. Applying a numerical integration in the piled raft 
analysis, leads to significant computations, especially in large piled raft problems. In the next 
case study closed form equations derived from Mindlin’s solution are used in all 
computations. To verify these equations for determining flexibility coefficients, the settlement 
influence factors I1 for a single pile obtained by Poulos (1968) and Poulos/ Davis (1968) are 
compared with those obtained by closed form equations listed in chapter 1. 
 
From the analysis of a single pile carried out by Poulos/ Davis (1968), the settlement s1 [m] of 
a single piles is expressed as: 
 

11 I 
E L
P = s

s

                                                         (2.87) 

  
where: 
P  Load on the pile head, [kN].  
L Pile length, [m]. 
Es  Young’s modulus of the surrounding soil mass, [kN/m2].  
I1 Settlement influence factor for a single pile, [-]. 
 
A pile of length L=12.5 [m] is chosen . Pile is divided into 10 elements, each 1.25 [m]. Load 
on the pile head P and Young’s modulus of the surrounding soil mass Es are chosen to make 
the term P/Es of Eq. (2.87) equal to unit. Thus, load on the pile head is chosen to be P=5000 
[kN], while Young’s modulus of the surrounding soil mass is chosen to be Es=5000 [kN/m2]. 
The settlement influence factors I1 is determined at different values of h/L and L/d, where h 
[m] is the thickness of the soil layer and d [m] is the pile diameter. 
 
The settlement influence factors I1 of a single pile published by Poulos (1968) in Table 1 in 
his paper are compared with those obtained from the closed form equations. The factors are 
tabulated in  Table 2-1 and  Table 2-2 for two different values of Poisson’s ratio of the soil νs. 
From these tables, it can be observed that the settlement influence factors obtained by closed 
form equations in chapter 1 at different soil layers and pile diameters are nearly equal to those 
obtained by Poulos (1968) with maximum difference of Δ = 2.78 [%]. 
 
Flexibility coefficients determined from numerical integration are also available in ELPLA. 
 Table 2-3 and  Table 2-4 listed the settlement influence factors I1 when using numerical 
integration. The tables show that settlement influence factors determined from closed form 
equation and those determined from numerical integration are nearly the same. 
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Table 2-1 Settlement influence factors I1 [-] for a single pile (using closed from equations) 
(Poisson’s ratio of the soil νs = 0.5 [-]) 

 
 
 

h/L 

 
Poulos (1968) ELPLA  

 
Max. 
Diff. 
Δ [%] 

 
L/d 

 
L/d 

 
10 

 
25 

 
100 

 
10 

 
25 

 
100 

 
4 

 
1.41 

 
1.86 

 
2.54 

 
1.44 

 
1.88 

 
2.56 

 
2.13 

 
5 

 
1.31 

 
1.76 

 
2.44 

 
1.34 

 
1.77 

 
2.47 

 
1.23 

 
2.5 

 
1.20 

 
1.64 

 
2.31 

 
1.22 

 
1.65 

 
2.33 

 
1.67 

 
1.5 

 
0.98 

 
1.42 

 
2.11 

 
0.99 

 
1.43 

 
2.12 

 
1.02 

 
1.2 

 
0.72 

 
1.18 

 
1.89 

 
0.74 

 
1.19 

 
1.90 

 
2.78 

 

Table 2-2 Settlement influence factors I1 [-] for a single pile (using closed from equations) 
(Pisson’s ratio of the soil νs = 0.0 [-]) 

 
 
 

h/L 

 
Poulos (1968) 

 
ELPLA 

 
 

Max. 
Diff. 
Δ [%] 

 
L/d 

 
L/d 

 
10 

 
25 

 
100 

 
10 

 
25 

 
100 

 
4 

 
1.16 

 
1.47 

 
1.95 

 
1.17 

 
1.48 

 
1.94 

 
0.86 

 
5 

 
1.07 

 
1.37 

 
1.86 

 
1.08 

 
1.38 

 
1.86 

 
0.93 

 
2.5 

 
0.96 

 
1.27 

 
1.75 

 
0.98 

 
1.28 

 
1.74 

 
2.08 

 
1.5 

 
0.80 

 
1.11 

 
1.58 

 
0.81 

 
1.12 

 
1.59 

 
1.25 

 
1.2 

 
0.62 

 
0.94 

 
1.44 

 
0.62 

 
0.94 

 
1.42 

 
1.39 
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Table 2-3 Settlement influence factors I1 [-] for a single pile (using numerical integration) 
(Poisson’s ratio of the soil νs = 0.5 [-]) 

 
 
 

h/L 

 
Poulos (1968) 

 
ELPLA 

 
 

Max. 
Diff. 
Δ [%] 

 
L/d 

 
L/d 

 
10 

 
25 

 
100 

 
10 

 
25 

 
100 

 
4 

 
1.41 

 
1.86 

 
2.54 

 
1.42 

 
1.84 

 
2.51 

 
1.18 

 
5 

 
1.31 

 
1.76 

 
2.44 

 
1.31 

 
1.74 

 
2.42 

 
0.82 

 
2.5 

 
1.20 

 
1.64 

 
2.31 

 
1.19 

 
1.62 

 
2.30 

 
1.22 

 
1.5 

 
0.98 

 
1.42 

 
2.11 

 
0.97 

 
1.40 

 
2.08 

 
1.42 

 
1.2 

 
0.72 

 
1.18 

 
1.89 

 
0.72 

 
1.16 

 
1.86 

 
1.59 

 

Table 2-4 Settlement influence factors I1 [-] for a single pile (using numerical integration) 
(Pisson’s ratio of the soil νs = 0.0 [-]) 

 
 
 

h/L 

 
Poulos (1968) 

 
ELPLA 

 
 

Max. 
Diff. 
Δ [%] 

 
L/d 

 
L/d 

 
10 

 
25 

 
100 

 
10 

 
25 

 
100 

 
4 

 
1.16 

 
1.47 

 
1.95 

 
1.15 

 
1.45 

 
1.91 

 
2.09 

 
5 

 
1.07 

 
1.37 

 
1.86 

 
1.06 

 
1.36 

 
1.82 

 
2.15 

 
2.5 

 
0.96 

 
1.27 

 
1.75 

 
0.96 

 
1.26 

 
1.72 

 
1.71 

 
1.5 

 
0.80 

 
1.11 

 
1.58 

 
0.79 

 
1.09 

 
1.55 

 
1.90 

 
1.2 

 
0.62 

 
0.94 

 
1.44 

 
0.61 

 
0.92 

 
1.40 

 
2.78 
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2.6.2 Case study: Piled raft of Torhaus 
Torhaus is the first building in Germany with a foundation designed as a piled raft,  Figure 2-
10. The building lies in Frankfurt city in Germany. It is 130 [m] high and rests on two 
separate piled rafts, where a street passes under the building. Measured instruments were 
installed inside the foundation to record piled raft settlement and stress. Many authors studied 
the foundation of the Torhaus and applied their analysis methods on piled raft. Some of them 
are Sommer et al. (1985), Sommer (1989) and Reul & Randolf (2003). 
 

 
Figure 2-10 Torhaus nach http://www.fussballportal.de/images/wm/fra_torhaus.jpg 

 Figure 2-12 shows a layout of Torhaus with piled rafts. The building has no underground 
floors. The foundation is two separate equal piled rafts with rectangular shape areas, each of 
17.5 [m] * 24.5 [m] sides. The distance between the two rafts is 10 [m]. Rafts are founded at a 
depth 3.0 [m] under the ground surface. The estimated total load on each raft is 200 [MN]. 
Raft thickness is 2.5 [m]. A total of 42 bored piles with a length of l = 20 [m] and diameter of 
D = 0.9 [m] are located under each raft. The pile spacing varies from 3.5 D to 3.0 D. The 
subsoil at the location of the building consists of gravel and sand up to 5.5 [m] below the 
ground surface, followed by layers of Frankfurt clay extending to great depth. The 
groundwater level lies below rafts. 
 
The building is constructed between 1983 and 1986, the recorded maximum settlement at the 
raft meddle in 1988 was about 12 [cm] according to Sommer (1989). If Torhaus stands on a 
raft only, the expected settlement would be about 26 [cm] based on geotechnical studies 
according to Sommer et al. (1985). Therefore, to reduce the settlement, piled rafts were 
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considered. Using available data and results of Torhaus piled rafts, which have been 
discussed in details in the previous references, the present piled raft analysis is evaluated and 
verified for analyzing a piled raft. 

2.6.2.1 Soil properties 
Young’s modulus: 
According to Reul & Randolf (2003), Young’s modulus of the sand with gravel layer under 
the rafts is E = 75000 [kN/m2]. The Young’s modulus for reloading is taken to be W = 3 E. 
Based on the back analysis after Amann et al. (1975), the distribution of modulus of 
compressibility for loading of Frankfurt clay with depth is defined by the following empirical 
formula:  

( )z +  E = E sos 0.35 1                                                              (2.88) 
while that for reloading is: 
 

[ ]2mMN/70  = W s                                                              (2.89) 
 
where: 
Es  Modulus of compressibility for loading, [MN/m2]. 
Ws  Modulus of compressibility for reloading, [MN/m2]. 
Eso  Initial modulus of compressibility, Eso=7 [MN/m2].  
z Depth measured from the clay surface, [m]. 
 
Undrained cohesion and limit pile load: 
The undrained cohesion cu of Frankfurt clay increases with depth from cu=100 [kN/m2] to 
cu=400 [kN/m2] in 70 [m] depth under the clay surface according to Sommer & Katzenbach 
(1990). Russo (1998) suggested a limiting shaft friction not less than 180 [kN/m2] meeting 
undrained shear strength of 200 [kN/m2]. To carry out the present analysis a limit shaft 
friction of ql = 180 [kN/m2] is assumed, which gives a limit pile load of Ql = 10 [MN] where 
it is calculated from:  
 

[MN] 10 [kN] 1017920*0.9*π*801**π*τ ==== lD Ql                   (2.90) 
 
Poisson’s ratio: 
Poisson’s ratio of the soil is taken to be νs=0.25 [-]. 
 
To carry out the analysis, the subsoil under the raft is considered as indicated in the boring log 
of  Figure 2-11 that consists of 13 soil layers. The total depth under the ground surface is taken 
to be 113 [m]. 
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BP1

S,g

3.00

E = 75000[kN/m2],F   
W = 225000[kN/m2],   
Gam = 18[kN/m3],Nu   

S,g

5.50

E = 75000[kN/m2],F   
W = 225000[kN/m2],   
Gam = 8.19[kN/m3],   

T

15.50

E = 19000[kN/m2],F   
W = 70000[kN/m2],C  
Gam = 8.7[kN/m3],N   

T

25.50

E = 44000[kN/m2],F   
W = 70000[kN/m2],C  
Gam = 8.7[kN/m3],N   

T

35.50

E = 68000[kN/m2],F   
W = 70000[kN/m2],C  
Gam = 8.7[kN/m3],N   

T

45.50

E = 93000[kN/m2],F   
W = 93000[kN/m2],C  
Gam = 8.7[kN/m3],N   

T

55.50

E = 117000[kN/m2],   
W = 117000[kN/m2],   
Gam = 8.7[kN/m3],N   

T

65.50

E = 142000[kN/m2],   
W = 142000[kN/m2],   
Gam = 8.7[kN/m3],N   

T

75.50

E = 166000[kN/m2],   
W = 166000[kN/m2],   
Gam = 8.7[kN/m3],N   

T

85.50

E = 191000[kN/m2],   
W = 191000[kN/m2],   
Gam = 8.7[kN/m3],N   

T

95.50

E = 215000[kN/m2],   
W = 215000[kN/m2],   
Gam = 8.7[kN/m3],N   

T

105.50

E = 240000[kN/m2],   
W = 240000[kN/m2],   
Gam = 8.7[kN/m3],N   

T

113.00

E = 261000[kN/m2],   
W = 261000[kN/m2],   
Gam = 8.7[kN/m3],N   

GW 3.00    

   

S, Sand

G, Gravel

T, Clay

 
Figure 2-11 Boring log 
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2.6.2.2 Raft and pile material 
Raft has the following material parameters: 
Young's modulus  Eb   = 3.4 * 107 [kN/m2] 
Poisson's ratio     νb     = 0.2          [-] 
Unit weight          γb     = 25           [kN/m3] 
 
while piles have the following material parameters: 
Young's modulus Eb     = 2.35 * 107  [kN/m2] 
Unit weight          γb     = 25              [kN/m3] 

2.6.2.3 Analysis of the piled raft 
Comparisons are carried out to evaluate the nonlinear analysis of piled elastic raft using 
composed coefficient technique. In which, results of three-dimensional finite element analysis 
and field measurements are compared with those obtained by the present analysis. In the 
comparisons the present analysis is termed NPRH. 
 
The raft is divided into rectangular elements as shown in  Figure 2-13. Element sizes in x-
direction for a single raft are 1.75+10*1.4+1.75= 17.5 [m], while those in y-direction are 
14*1.75=24.5 [m]. Piles are divided into line elements with 2.0 [m] in length. The raft is 
considered to be elastic plate supported on rigid piles. The effective depth of the soil layers 
under the raft is taken to be H = 110 [m] as assumed by three-dimensional finite element 
analysis. 
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Frankfurt clay

(130 m)

(0.0 m)

(100 m)

Sand with gravel

 
Figure 2-12 Layout of Torhaus with piled rafts 

 

17.5 [m] 10.0 [m] 17.5 [m]

24.5 [m]216

345

 
 

Figure 2-13 Mesh of Torhaus piled rafts with piles 
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2.6.2.4 Comparison with three-dimensional finite element analysis and field 
measurements  

Reul & Randolf (2003) analyzed Torhaus piled rafts using three dimensional finite element 
model and compared their results with those obtained by field measurements according to 
Sommer (1989). For reducing the computational effort and time, they took the advantage of 
the symmetry in shape, soil and load geometry about both x- and y-axes to carry out the 
analysis for a quarter of a piled raft. In NPRH the two piled rafts are analyzed together to take 
the interaction among all elements of piled rafts. A linear analysis is carried out first to obtain 
the initial modulus of subgrade reaction. In this primary analysis the effect of reloading is 
taken into account. For the nonlinear analysis, the accuracy number is chosen to be 0.0002 
[m]. Seven cycles in few minutes are required to obtain the nonlinear analysis of the piled 
rafts together. This is related to that using composed coefficient technique reduced the size of 
soil stiffness matrix from [1314*1314] to [390*390]. Accordingly, the total number of 
equations was reduced to 1170, where npr =1314, nr = 390 and number of unknown per node 
is 3 (3 nr = 1170).  
 
 Table 2-5 lists results of central settlement and bearing factor of piled raft obtained by NPRH 
and those obtained by Reul & Randolf (2003) using three-dimensional finite element analysis. 
Also, the table includes the measured results presented by Sommer (1989).  Figure 2-14 and 
 Figure 2-15 compare loads on piles 1 to 6 ( Figure 2-13) obtained by NPRH with those 
obtained by Reul & Randolf (2003) using three-dimensional finite element analysis and with 
measured pile loads presented by Sommer (1989).  
 

Table 2-5 Comparison between results obtained by 3D FE-Analysis and field measurements 
with those obtained by NPRH 

Type of analysis Measurement 3D FE-Analysis NPRH 

Central settlement scenter [cm] 12.4 9.6 11.2 

Bearing factor αkpp [%] 67 76 64 

 
 Table 2-5 shows that settlement and bearing factor of piled raft for NPRH is in good 
agreement with field measurements. Results of pile loads in  Figure 2-14 and  Figure 2-15 are 
in good agreement with both those of three-dimensional finite element analysis and field 
measurements. Three-dimensional finite element analysis gave a relatively big difference in 
the bearing factor compared with that of field measurement and NPRH. 
 
This case study shows that NPRH is not only an acceptable method to analyze piled raft but 
also a practical one for analyzing large piled raft problems. Besides the analysis gives good 
agreement with measured results, it takes less computational time and less effort for 
generating input data compared with other complicated models using three dimensional finite 
element analysis. 
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2.6.2.5 Comparing among different analysis types  
To show the difference between results when analyzing piled raft of Torhous linearly and 
nonlinearly as piled elastic raft or piled rigid raft, piled raft of Torhous is analyzed four times 
as follows: 
 
- Linear piled rigid raft. 
- Nonlinear piled rigid raft. 
- Linear piled elastic raft. 
- Nonlinear piled elastic raft. 
 
For the four analysis types,  Table 2-6 shows central settlement and bearing factor of piled raft, 
while  Figure 2-16 and  Figure 2-17 show loads on piles 1 to 6. In general, it can be noticed 
from  Table 2-6 and these figures that: 
 
a) Settlement 
- Settlement from nonlinear analysis for piled rigid raft or piled elastic raft is greater than 

that obtained from linear analysis. 
- The nonlinear settlement exceeds linear settlement by 48% for piled rigid raft and by 29% 

for piled elastic raft. 
- For a single analysis, either linear or nonlinear, the difference in settlement obtained from 

analyzing piled rigid raft or piled elastic raft is small. This means any of the analysis can 
be used for estimating the settlement.  

 
b) Bearing factor of piled raft 
- Bearing factor of piled raft from nonlinear analysis is less than that obtained from linear 

analysis. 
- Bearing factor of piled raft from nonlinear analysis decreases by 13% for analyzing piled 

rigid raft and by 15% for piled elastic raft. 
 
c) Force on pile head  
- Using nonlinear analysis redistributes pile loads by increasing values of inner piles (piles 

1 and 6) and decreasing values of edge piles (piles 2, 3, 4 and 5). 
- Total pile loads of piled rigid raft are greater than those of piled elastic raft. 
- Pile loads for edge piles of piled rigid raft are greater than those of piled elastic raft and 

vice verse for inner piles. 
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Table 2-6 Comparison between results of different analysis types 
 
 
Type of analysis 

 
Piled rigid raft 

 
Piled elastic raft 

 
Linear 

 
Nonlinear 

 
Linear 

 
Nonlinear 

 
Central settlement scenter [cm] 

 
7.0 

 
13.4 

 
8.0 

 
11.2 

 
Bearing factor αkpp [%] 

 
88 

 
77 

 
75 

 
64 

 
Applying different analysis types on piled raft of Torhous shows that the nonlinear analysis of 
piled elastic raft is the acceptable analysis type, which its results are agreement with measured 
values. 
 
 

 
Figure 2-14 Comparison between pile loads obtained by 3D FE-Analysis and field 

measurements with those obtained by NPRH (Piles 3, 4 and 5)  
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Figure 2-15 Comparison between pile loads obtained by 3D FE-Analysis and field 

measurements with those obtained by NPRH (Piles 1, 2 and 6) 

 

 
Figure 2-16 Comparison between pile loads of different analysis types (Piles 3, 4 and 5)  
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Figure 2-17 Comparison between pile loads of different analysis types (Piles 1, 2 and 6) 
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Chapter 3 
 

3 Empirical with numerical modeling pile group and piled raft 
 

3.1 Introduction 
 
Many authors have studied pile-soil system with nonlinear response using theoretical relations 
between the load and settlement. Mandolini & Viggiani (1997), (1998) and Russo (1998) 
considered piles as nonlinear interacting springs based on the method of interaction factors. In 
their analysis, the no-linearity is essentially concentrated at the pile-soil interface, while the 
interaction between other elements (pile-pile, pile-raft and raft-pile-interactions) may be 
represented by a linear model. The nonlinear soil-pile response is represented by an 
expression corresponding to a hyperbolic load-settlement relationship for the single pile. The 
hyperbolic relation based on a function having a maximum value for the pile capacity. The 
maximum value is intended only as a geometrical parameter of the hyperbola fitting the load-
settlement curve in the load range of interest. In some cases, this value may significantly 
differ from the actual failure load (Mandolini & Viggiani (1997)). 
 
Basile (1999), (2003) had used a nonlinear model follows the well-established hyperbolic 
relationship between soil stress and strain. This model was proposed by Duncan & Chang 
(1970), which assumes that soil modulus of elasticity varies with the stress level at the pile-
soil interface. The hyperbolic curve fitting for this model depends on some constants, which 
are difficult to be evaluated. The best way to determine these constants is by fitting the load-
deformation curve with the data from the full-scale pile load test.  
 
Witzel & Kempfert (2005) presented empirical relations to predict load-settlement behavior 
for precast driven piles using field test data. Also, most national codes such as German 
standard  DIN 4014 [5] and Egyptian standard ECP [7] present empirical relations for load-
settlement of piles based on situ statistical results. Therefore, El Gendy et al. (2006) 
developed a mixed technique contains empirical and mathematical models for analyzing pile 
group and piled raft. The technique depends on load-settlement curve obtained from field 
measurements or empirical relations, a nonlinear analysis of combined piled-raft to take into 
account the actual response of subsoil behavior. In the analysis, each pile is treated as two 
units, shaft and base, having a uniform settlement along the pile shaft and in the pile base. 
This assumption enables modeling the nonlinear behavior of combined piled-raft. The 
nonlinear response of the pile is based on the DIN 4014 empirical relation of load-settlement 
curve. Connecting between empirical and theoretical procedures, a method termed NPRD for 
nonlinear analysis of combined piled-raft using DIN 4014 is developed. The procedure meets 
the requirements of the KPP-guideline [23], section 6, to a computation model. The efficiency 
of NPRD is demonstrated in a comparison computation of Frankfurt Messeturm with the 
results of different authors. The method was implemented in the program ELPLA [8]. 
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3.2 Numerical Modeling 
In the analysis of the numerical model, the self-settlement of pile is determined from DIN 
4014 [5] load-settlement relationship while the settlement due to pile-pile, pile-raft and raft-
soil interactions are determined numerically using flexibility coefficients. Full compatibility 
between settlements of piles, raft and soil is achieved at pile-raft-soil interface. 

3.2.1 Pile-pile interaction 
DIN 4014 presents pile load in two components; tip force on the base of the pile and skin 
friction force acting along the pile shaft. Therefore, two flexibility matrices for pile-pile 
interaction without the effect of pile itself are determined. The first matrix represents the 
influence of unit tip forces, while the other represents the influence of unit skin forces. 

3.2.1.1 Settlement along the pile shaft Sbsi, j [m] due to a tip force Qbj [kN] 

To formulate equations of the method, a system of two piles of different lengths is considered 
as shown in Figure 3-1. The actual tip stress qbj [kN/m2] on the base of the pile j is replaced 
by an equivalent tip force Qbj [kN]. The pile i of a length li [m] is subdivided into m elements 
of equal length Δl [m]. First, the settlement in a shaft element k of the pile i that is influenced 
by a tip force Qbj acting on the base of the pile j is determined. Then, a uniform settlement 
along the pile shaft due to this tip force can be calculated numerically by integrating 
settlements for the individual elements.  
 
According to Mindlin’s solution (1936), the settlement Sbsk, j in a point k at a depth z from the 
surface due to a tip force Qbj on the base of pile j is given by: 
 

Qb f = Sbs jj k,j k,                                                        (3.1) 
 
where fk, j is given by Mindlin’s solution as:   
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where: 

( ) ( ) and 22
2

22
1 c +z  + r = R ,c -z  + r = R  

c  Depth of the point load Qbj from the surface, [m]. 
z  Depth of the studied point k from the surface, [m]. 
r  Radial distance between points k and j, [m]. 
fk, j  Flexibility coefficient of point k due to a unit load at point j, [m/kN]. 
Gs Shear modulus of the soil, [kN/m2]. Gs = 0.5 Es / (1+ νs) 
Es Elasticity modulus of the soil, [kN/m2]. 
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νs Poisson’s ratio of the soil, [-]. 
 

 
Figure 3-1 Settlement Sbsk, j in a pile element k due to a tip force Qbj on the base of pile j 

Then the uniform settlement Sbsi, j along the shaft of pile i due to a tip force Qbj on the base of 
pile j can be obtained from: 
 

 dz Sbs 
l
1 = Sbs

z

z j k,
i

j i, ∫
2

1

                                                  (3.3) 

 
Although Eq. (3.3) can be integrated analytically for z but a numerical integration is used to 
allow analyzing pile passing through multi-layered soil as described later. Substituting Eq. 
(3.1) in Eq. (3.3) and applying numerical integration using the rectangular rule, leads to: 

 

( ) f + ... + f + f + f + f  
l

l Qb
 = Sbs j m,j ,j ,j ,j ,

i

j
j i, 4321

∆
                          (3.4) 

 
Equation (3.4) is written in a simplified form as: 
 

Qb F = Sbs jj i,j i,                                                        (3.5) 
 
where Fi, j [m/kN] is the shaft flexibility coefficient of pile i due to a tip force Qbj on the base 
of pile j. The shaft flexibility coefficient Fi, j is expressed as: 
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( ) f + ... + f + f + f + f  
l
l = F j m,j ,j ,j ,j ,
i

j i, 4321
∆                                (3.6) 

 

3.2.1.2 Settlement in the pile base Sbbi, j [m] due to a tip force Qbj [kN] 

The settlement Sbbi, j in the base of the pile i due to a tip force Qbj on the base of pile j is 
expressed as: 
 

Qb F = Sbb jj b,j i,                                                          (3.7) 
 
where Fb, j [m/kN] is the base flexibility coefficient of pile i due to a tip force Qbj on the base 
of pile j. The base flexibility coefficient is determined from Eq. (3.2) by putting z = z2, where 
z2 [m] is the base depth of pile i from the ground surface. 
 

3.2.1.3 Settlement in the pile Sbi, j [m] due to a tip force Qbj [kN] 

 
From the assumption that the pile has a uniform settlement in all its nodes, settlement along 
the shaft is the same as that in the base. Now, the settlement in the pile i can be represented by 
one value Sbi, j, which is the average of shaft and base settlements of the pile due to the tip 
force Qbj on the base of the pile j. Taking the average of settlements in Eqns (3.5) and (3.7), 
gives the settlement in the pile by: 
 

   Qb Fb = Sb jj i,j i,                                                          (3.8) 
 
where Fbi, j= 0.5 (Fi, j+Fb, j) is the flexibility coefficient of pile i due to a tip force Qbj on the 
base of pile j, [m/kN]. 
 

3.2.1.4 Settlement in the pile Sbi [m] due to all tip forces 

 
For a group of np piles, the settlement Sbi in a pile i is attributed to settlements caused by all 
tip forces acting on np piles except pile i. Then, settlement Sbi is given by:  

 

ji  ,Qb Fb  = Sb + ... + Sb + Sb + b S= Sb jj i,

n

j=
n i, i, i, i,i ≠∑

1
321                        (3.9) 

For a pile group of np piles, Eq. (3.9) can be written in matrix form as: 
          

{ } [ ]{ }Qb Fb = Sb                                                          (3.10) 
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where: 
{Sb} np vector of settlements in piles due to tip forces on pile bases. 
{Qb} np vector of tip forces on pile bases. 
[Fb] np*np matrix of pile flexibility coefficients due to unit tip forces on piles, Fbi, i = 0. 
 

3.2.1.5 Settlement along the pile shaft Sssi, j [m] due to a skin friction force Qsj [kN] 

 
Figure 3-2 shows a system of two piles where a shaft element k of a pile i is influenced by a 
skin friction τsj [kN/m2] acting on the shaft perimeter of a pile j with a diameter dj [m] and a 
length lj [m]. Using DIN 4014, the skin friction along the shaft perimeter of pile j is 
represented by a total skin friction force Qsj [kN] = π dj lj τsj. To avoid extensive computations 
when applying Mindlin’s solution to determine flexibility coefficients due to shaft stress along 
the pile shaft, the shaft stress τsj is replaced by an equivalent line load T [kN/m] = Qsj / lj 
acting on the axis of the pile. The settlement Sssk, j in a point k at a depth z from the surface 
due to a total skin force Qsj on a pile j is expressed as: 
      

Qs I = Sss jj k,j k,                                                       (3.11) 
 
where Ik, j [m/kN] is the flexibility coefficient of point k due to the total skin friction force Qsj 
on pile j. This flexibility coefficient is determined from Eq. (3.2) by integrating the coefficient 
of point load dQsj = T dc over the length of pile j. The flexibility coefficient Ik, j of the point k 
due to a unit skin force on pile j can be obtained from: 
 

 dc f 
l
1 = I

c

c j k,
j

j k, ∫
2

1

                                                 (3.12) 

 
The integration yields to: 
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Figure 3-2 Settlement Sssk, j in a pile element k due to a skin force Qsj =Tj lj on pile j 

where terms I1 to I5 are given by: 
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where: 
c1  Start depth of the line load T from the surface, [m]. 
c2  End depth of the line load T from the surface, [m]. 
lj  Length of the line load T, [m]. 
r  Radial distance between point k and j [m]. 
 
The uniform settlement Sssi, j along the shaft of pile i due to a skin force Qsj on pile j can be 
obtained by using the same approach used for determining the uniform settlement due to a tip 
force on the base. Similarly to Eq. (3.5), the uniform settlement Sssi, j is given by: 
 

Qs L = Sss jj i,j i,                                                          (3.19) 
 
where Li, j [m/kN] is the shaft flexibility coefficient of pile i due to a skin force Qsj on pile j. 
The shaft flexibility coefficient Li, j is expressed as: 
 

( ) I + ... + I + I + I + I  
l
l = L j m,j ,j ,j ,j ,
i

j i, 4321
∆                                (3.20) 
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3.2.1.6 Settlement in the pile base Ssbi, j [m] due to a skin force Qsj [kN] 

 
The settlement Ssbi, j in the base of the pile i due to a skin force Qsj on pile j is expressed as: 
 

Qs L = Ssb jj b,j i,                                                      (3.21) 
 
where Lb, j [m/kN] is the base flexibility coefficient of pile i due to a skin force Qsj on pile j. 
The base flexibility coefficient is determined from Eq. (3.11) by putting z = z2. 
 

3.2.1.7 Settlement in the pile Ssi, j [m] due to a skin force Qsj [kN] 

 
Similarly to Eq. (3.8), the settlement in the pile is obtained from: 
 

Qs Is = Ss jj i,j i,                                                     (3.22) 
 
where Isi, j= 0.5 (Li, j+Lb, j) is the flexibility coefficient of pile i due to a skin force Qsj on pile j, 
[m/kN].  
 

3.2.1.8 Settlement in the pile Ssi [m] due to all skin forces 

 
Again and similar to Eq. (3.10), the settlement Ssi for a pile group of np piles is given in 
matrix form by: 
 

{ } [ ]{ }Qs Is = Ss                                                      (3.23) 
 
where: 
{Ss} np vector of settlements in piles due to skin forces on piles. 
[Is] np*np matrix of pile flexibility coefficients due to unit skin forces on piles, Isi, i = 0. 
{Qs} np vector of skin forces on piles. 
 

3.2.1.9 Self-settlement of the pile Svi [m] 

 
According to DIN 4014 [5], the self-settlement of the pile is determined from the empirical 
nonlinear relation between the load and settlement of a single pile as indicated in Figure 3-3. 
From this figure, the relation between the self-settlement in the pile and its load can be 
expressed as: 
 

Qp Cp = Qp 
k 

1 = Sv iii
i

i tan
                                             (3.24) 
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where: 
Svi  Self-settlement of pile i, [m]. 
Qpi  Load on pile i, Qpi = Qbi + Qsi, [kN]. 
tan ki  Ratio between the load on pile and the settlement, [kN/m]. 
Cpi  Flexibility coefficient of pile i due to a unit load on it, Cpi = 1/tan ki, [m/kN]. 
 

Pi
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 lo
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p 
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Self-settlement Sv [m] 

Tip resistance 

Pile resistance 

Skin resistance 
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Qb i 
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Qp i 

k i 

Srg 

k i (o) 
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Figure 3-3 Load-settlement curve of a single pile according to DIN 4014 [5] 

For a pile group of np piles, Eq. (3.24) can be written in matrix form as: 
 

{ } [ ]{ }Qp Cp = Sv                                                      (3.25) 
 
where: 
{Sv} np vector of self-settlements in piles. 
[Cp] np*np diagonal matrix of flexibility coefficients due to unit pile loads. 
{Qp} np vector of pile loads. 
 
Equation (3.25) may be written in another form as: 
 

{ } [ ]{ }Sv Kp = Qp                                                     (3.26) 
 
where [Kp]=[Cp]-1 is a diagonal matrix of dimension [np*np] represents soil stiffness due to 
pile self-settlements. The matrix coefficients are obtained from (tan ki). 
 
In the nonlinear analysis of pile group or piled raft, it is required to assess an initial value for 
the flexibility coefficient Cpi to start the computation. This value may be estimated from the 
ratio between pile load Qt and settlement Srg as indicated in Figure 3-3 and Eq. (3.27). It is 
clear from Figure 3 that for a relative light applied load on the raft, i.e. Qp ≤ Qt, the analysis 
can be carried out by this initial value without modification. 
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k 
1 = Cp (o)

i

(o)
i tan

                                                      (3.27) 

 
where: 
tan ki

(o)  Ratio between Qt and Srg, [kN/m]. 
Cpi

(o)  Initial flexibility coefficient of pile i due to a unit load on it, [m/kN]. 
Srg Settlement at ultimate skin friction, [m]. 
Qt  Pile load corresponding to Srg, [kN]. 
 

3.2.2 Pile-raft interaction 
 
In the analysis, both the raft and the contact area of the supporting medium are divided into 
elements. For each node in the elements, the contact pressure area around this node may take 
different shapes according to the natural geometry of the elements around the node. The 
contact pressure qrj [kN/m2] at the area around a node j on the raft is replaced by an 
equivalent contact force Qrj [kN]. Figure 3-4 shows a shaft element k of a pile i that is 
influenced by a contact force Qrj acting on the raft at node j. 
 
 

 
 
Figure 3-4 Settlement Srsk, j in a pile element k due to a contact force Qrj 

Using the same approach described in section 3.2.1 with the same equations, a settlement Srsk, 

j in a pile element k due to a contact force Qrj is determined. Then, a uniform settlement Srsi, j 
along the shaft of pile i can be obtained using numerical integration as the same manner in 
Eqns (3.3) to (3.5). Finally, settlement Srbi, j in the base of the pile i due to contact force Qrj is 
obtained as the same manner in Eq. (3.7). Taking the average of settlements Srsi, and Srbi, j, 
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gives the settlement in the pile by: 
 

Qr Jr = Sr jj i,j i,                                                       (3.28) 
 
where Jri, is the flexibility coefficient of pile i due to a contact force Qrj on node j on the raft, 
[m/kN]. 
 
For a pile group of np piles, settlements in piles due to contact forces is expressed as: 
  

{ } [ ]{ }Qr Jr = Sr                                                      (3.29) 
 
where: 
{Sr} np vector of settlements in piles due to contact forces on the raft. 
[Jr] np*nr matrix of pile flexibility coefficients due to unit contact forces. 
{Qr} nr vector of contact forces on the raft. 
 
Now the total settlement in a pile i due to all forces in the system of piled raft foundation is 
given by: 
 

{ } { } { } { } { }Sr + Sv + Ss + Sb = Sp                                           (3.30) 
 
Substituting Eqns (3.10), (3.23), (3.25) and (3.29) in Eq. (3.30), gives: 
 

{ } [ ]{ } [ ]{ } [ ]{ } [ ]{ }Qr Jr + Qp Cp + Qs Is + Qb Fb = Sp                             (3.31) 
 
where: 
{Sp} np vector of total settlements in piles due to all forces in the system of piled raft 
foundation. 
 

3.2.3 Raft-pile interaction 
 
Figure 3-5 and Figure 3-6 show the raft-pile interaction for both pile base and shaft. Referring 
to Figure 5, the settlement Wbi, j [m] in a node i on the raft due to a tip force Qbj on the base of 
pile j is given by: 
 

Qb Cb = Wb jj i,j i,                                                    (3.32) 
 
while the settlement Wbi, j [m] in a node i on the raft due to a skin force Qsj on pile j as shown 
in Figure 3-6 is given by: 
 

Qs Cs = Ws jj i,j i,                                                     (3.33) 
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where Cbi, j [m/kN] is the flexibility coefficient of node i due to a tip force Qbj on the base of 
pile j and Csi, j [m/kN] is the flexibility coefficient of node i due to a skin force Qsj on pile j. 
The flexibility coefficients Cbi, j and Csi, j are obtained directly from Eq. (3.2) and Eq. (3.13), 
respectively. 
 
For a raft of nr nodes Eq. (3.32) can be written in matrix form as: 
 

{ } [ ]{ }Qb Cb = Wb                                                     (3.34) 
 
 
where: 
{Wb} nr vector of settlements in raft nodes due to base forces. 
[Cb] nr*np matrix of raft flexibility coefficients due to unit tip forces on piles. 
 
Similarly, Eq. (3.33) for the raft is written as: 
 

{ } [ ]{ }Qs Cs = Ws                                                     (3.35) 
 
where: 
{Ws} nr vector of settlements in raft nodes due to skin forces. 
[Cs] nr*np matrix of raft flexibility coefficients due to unit skin forces on piles. 
 
 

Ground surface
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r
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Qbj

c

c

z
Wbi, j

 
Figure 3-5 Settlement Wbi, j in a node i due to a tip force Qbj on the base of pile j 
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Figure 3-6 Settlement Wsi, j in a node i due to a skin force Qsj =Tj lj on pile j 

3.2.4 Raft-soil interaction 
 
Mindlin’s solution is used to evaluate the settlement in a point within the soil mass due to load 
acting beneath the surface. Therefore, the solution is applied for pile problems. Also, 
Mindlin’s solution is particularly convenient for analyzing raft in piled raft problems where 
the foundation level in most cases is relatively deep making contact forces acting deeply 
beneath the surface. In the present analysis, settlements in raft nodes due to contact forces on 
the raft may be determined from Mindlin’s solution. In which, flexibility coefficients for a 
contact force on the raft are obtained from Eq. (3.2). This can be carried out directly for all 
nodes except the loaded node. The reason is that, at the loaded node c = z. Consequently, the 
first term in the Eq. (3.2) becomes singular when r = 0. In this case, Eq. (3.2) can be used but 
with replacing only the first term by another applicable for the loaded node. The replacement 
term in Eq. (3.2) is derived by converting the point load to an equivalent uniform load and 
carrying out the integration over the loaded area. The replacement term in Eq. (3.2) at the 
corner of a rectangular loaded area when z = c  ≠  0 after integration becomes: 
 

( )
( )

( )
( )






−−

−
b  m
b + m  

b
+

a  m
a + m  

a
   = C s ln1ln1

2
ν43

1                                 (3.36) 

 
where: 
a, b Sides of the loaded area, [m]. 

b + am = 22 and  



Chapter 3 
 

 

 3-17 

As Mindlin’s solution with c = 0 is equivalent to Boussinsq’s solution (1885), flexibility 
coefficient Ci, i due to a rectangular uniform loaded area when z = c = 0 is obtained from 
Boussinsq’s solution as follows: 
 

( )
( )

( )
( )






−−

−
b  m
b + m  

b
+

a  m
a + m  

a
 

E  
 = C

s

s
i i, ln1ln1

π2
ν1 2

                                 (3.37) 

 
When calculating the raft-soil flexibility coefficients, Eq. (3.37), Eq. (3.2) or Eq. (3.2) with 
the modified term in Eq. (3.36) is used. The settlement Wri, j [m] in a node i on the raft due to 
a contact force Qrj on node j is given by: 
 

Qr Cr = Wr jj i,j i,                                                     (3.38) 
 
where:  
Cri, j   Flexibility coefficient of node i due to a contact force Qrj on node j, [m/kN]. 
 Cri, j = fi, j  for i  ≠  j 
 Cri, j = Ci, i  for i = j and z = c = 0 
 Cri, j = fi, j  with modified term C1 for i = j and z = c  ≠  0 
 
For a raft of nr nodes, the settlement in matrix form is expressed as: 
 

{ } [ ]{ }Qr Cr = Wr                                                      (3.39) 
 
where: 
{Wr} nr vector of settlements in raft nodes due to contact forces on the raft. 
[Cr] nr*nr square matrix of raft flexibility coefficients due to unit contact forces on the raft. 
{Qr} nr vector of contact forces on the raft. 
 
Equation (3.39) is rewritten as: 
 

{ } [ ]{ }Wr Ks = Qr                                                      (3.40) 
 
where:  
[Ks]  Soil stiffness matrix of the raft, [Ks] = [Cr]-1. 
 
The total settlement in the raft due to all forces in the system of piled raft foundation is given 
by: 
 

{ } { } { } { }Wr + Ws + Wb = Wt                                              (3.41) 
 
Substituting Eqns (3.34), (3.35) and (3.39) in Eq. (3.41), gives: 
 

{ } [ ]{ } [ ]{ } [ ]{ }Qr Cr + Qs Cs + Qb Cb = Wt                                    (3.42) 
where: 
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{Wt} nr vector of total settlements in the raft due to all forces in the system of piled raft 
foundation. 
 

3.2.5 Formulation of soil equations 
 
Let the vector {S} represents the entire settlements in the raft mesh due to all forces in the 
system of piled raft foundation. This vector must have the dimension n=np+nr to include 
settlements in raft nodes and piles together. The vector of entire settlements can be obtained 
from: 
 

{ } { }
{ }  
Wt
Sp

 = S








                                                       (3.43) 

 
Substituting Eqns (3.31) and (3.42) in Eq. (3.43), gives: 
 

{ }
[ ]{ } [ ]{ } [ ]{ } [ ]{ }

[ ]{ } [ ]{ } [ ]{ }










Qr Cr + Qs Cs + Qb Cb 

Qr Jr + Qp Cp + Qs Is + Qb Fb 
 = S                          (3.44) 

 
or 
 

{ }
[ ][ ]
[ ][ ]

{ }
{ }

[ ]{ } [ ]{ } [ ]{ }
[ ]{ } [ ]{ }



































Qs Cs + Qb Cb 

Qr Jr + Qs Is + Qb Fb 
 + 

Qr 

Qp 
 

Cr  0  

 0  Cp 
 = S                  (3.45) 

 
 
Equation (3.45) is written in a simplified form as: 
 

{ } [ ]{ } { }Pr + Q C = S                                                   (3.46) 
 
 
where {Pr} is given by: 
 

{ }
[ ]{ } [ ]{ } [ ]{ }

[ ]{ } [ ]{ }










Qs Cs + Qb Cb 

Qr Jr + Qs Is + Qb Fb 
 = Pr                                  (3.47) 

 
 
and the term [C] {Q} is given by: 
 

[ ]{ }
[ ][ ]
[ ][ ]

{ }
{ }























Qr 

Qp 
 

Cr  0  

 0  Cp 
 = Q C                                            (3.48) 

where: 
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{Q} n vector of pile loads and contact forces. 
[C] n*n matrix of flexibility coefficients of piles and raft. 
 
Inverting the matrix of flexibility coefficients of piles and raft, Eq. (3.45) becomes: 
 

{ } [ ]{ } [ ]{ }Pr Ks - S Ks = Q                                               (3.49) 
 
 
or 

 
{ } [ ]{ } { }Pe - S Ks = Q                                                   (3.50) 

 
where [Ks]=[C]-1 is the soil stiffness matrix of piles and raft and is given by: 
 

[ ]
[ ][ ]
[ ][ ]












Kr  0  

 0  Kp 
 = Ks                                                    (3.51) 

 
while the vector {Pe} is given by: 
 

{ } [ ]{ }Pr Ks = Pe                                                     (3.52) 
 
where [Kr] represents soil stiffness of the raft alone. 
 

3.2.5.1 Multi-layered soil 

 
Flexibility coefficients described previously can be applied only for isotropic elastic half-
space soil medium. For finite layer, flexibility coefficients may be obtained as described by 
Poulos & Davis (1980). As an example, for a point k in a layer of depth h, the flexibility 
coefficient is then: 
 

( ) ( ) ( )∞∞ f - f = hf j h,j k,j k,                                              (3.53) 
 
where: 
fk, j(h) Flexibility coefficient for a point k in a layer of depth h due to a unit load on point j, 

[m/kN]. 
fk, j(∞) Flexibility coefficient for a point k due to a unit load on point j, in a semi-infinite 

mass, [m/kN]. 
fh, j(∞) Flexibility coefficient for a point within the semi-infinite mass directly beneath k, at a 

depth h below the surface due to a unit load on point j, [m/kN]. 
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3.2.5.2 Reloading pressure effect 

 
To improve the deformation behavior of the soil, the total settlement of the piled raft is 
divided into two parts. In the first part the ground will settle according to the reloading 
modulus of compressibility Ws [kN/m2] until the soil pressure reaches an overburden pressure 
qv [kN/m2]. In the second part after reaching the load qv  [kN/m2] the ground will settle more 
under pressure qe according to the loading modulus of compressibility Es [kN/m2] until 
reaching the average applied pressure qo [kN/m2]. The reloading pressure effect may be taken 
into consideration by dividing the flexibility coefficient into two terms (Figure 3-7) such that: 
 

( ) ( )Esf 
qo
qe + Wsf 

qo
qv = f j k,j k,j k,                                         (3.54) 

 
where: 
fk, j(Ws) Flexibility coefficient calculated with Ws for a point k due to a unit load on point j, 

[m/kN]. 
fk, j(Es) Flexibility coefficient calculated with Es for a point k due to a unit load on point j, 

[m/kN]. 
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Figure 3-7 Loading-settlement diagram 

3.2.6 Analysis of rigid piled raft 
 
Figure 3-8 shows a rigid piled raft where in this case the settlement is defined by rigid body 
translation wo at the center of the raft and by two rotations θx and θy about x- and y-axes, 
respectively.  
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Figure 3-8 Modeling rigid piled raft 
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Due to the piled raft rigidity, the following linear relation (plane translation) expresses the 
settlement Si at either a node in the raft or a pile that has coordinates (xi, yi) from the geometry 
centroid: 
 

  y +   x + w = S iyioi tantanθ                                             (3.55) 
 
Equation (3.55) is rewritten in matrix form for the entire piled raft system as: 
 

{ } [ ] { }∆ X = S T                                                       (3.56) 
 
where: 
{Δ} 3 vector of translation wo and rotations tan θy and tan θx  
[X]T 3*n vector of coordinates x and y. 
 
For equilibrium the following conditions must be satisfied: 

- The resultant due to external vertical forces acting on the raft must be equal to the sum 
of contact forces and pile loads.  

- The moment due to that resultant about either x-axis or y-axis must be equal to the 
sum of moments due to contact forces and pile loads about that axis. 

 
Assuming Qi is a symbol represents either pile load Qp or contact force Qr on the mesh, 
gives: 
 










y . Q + ... + y . Q + y . Q + y . Q = e . N

x . Q + ... + x . Q + x . Q + x . Q = e . N

Q + ... + Q + Q + Q = N

nn332211y

nn332211x

n321

                              (3.57) 

 
where: 
N  Resultant of applied loads acting on the raft, [kN]. 
N ex  Moment due to resultant about x-axis, Mx = N ex, [kN.m]. 
N ey Moment due to resultant about y-axis, My = N ey, [kN.m]. 
ex, ey  Eccentricities of the resultant about x- and y-axes, [m]. 
xi, yi  Coordinates of the load Qi, [m]. 
 
Equation (3.57) is rewritten for the entire piled raft foundation in matrix form as: 
 

{ } [ ]{ }Q X = N                                                        (3.58) 
 
where {N} is the vector of resultant and moments. 
 
Substituting Eqns (3.50) and (3.56) in Eq. (3.58), gives the following linear system of 
equations: 
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{ } [ ][ ][ ] { } [ ]{ }Pe X -  X Ks X = N T ∆                                        (3.59) 
 
Solving the above system of linear equations, gives wo, tan θx, and tan θy. Then, substituting 
these values in Eq. (3.56), after that in Eq. (3.60), gives the following equation to find the n 
unknown pile loads and contact forces. 
 

{ } [ ][ ] { } { }Pe -  X Ks = Q T ∆                                              (3.60) 
 
Substituting also the values wo, tan θx and tan θy in Eq. (3.56), gives the n settlements. 
 

3.2.7 Analysis of rigid pile group or flexible raft on rigid pile group 
 
Analysis of a rigid pile group of np piles using the described nonlinear relation is easier than 
that of rigid piled raft. In this case the contact forces {Qr} and settlements on raft nodes {Wt} 
are omitted from above equations. In this case, the vector {Pr} of Eq. (3.47) is given by: 
 

{ } [ ]{ } [ ]{ }{ }Qs Is + Qb Fb  = Pr                                           (3.61) 
 
and the term [C] {Q} in Eq. (3.48) is given by: 
 

[ ]{ } [ ]{ }Qp Cp = Q C                                                    (3.62) 
 
In the case of a flexible raft in which the group of piles acted on by known loads {Qp} and 
{Qr}, Eq. (3.45) may be used directly to evaluate the settlement of each pile in the group. 
 

3.2.8 Analysis of elastic piled raft 
 
It is possible to treat the raft as an elastic plate on rigid piles. From the finite element analysis 
of the plate, the equilibrium of the raft is expressed as:  
 

{ } { } { }Q - P =  Kg δ][                                                       (3.63) 
 
where:  
{p} 3*nr vector of applied loads and moments on the raft nodes. 
[Kg]  3 nr*3 nr plate stiffness matrix. 
{δ} 3*nr deformation vector of the raft. 
 
Substituting Eq. (3.50) in Eq (3.63), leads to: 
 

                      [ ]{ } { } [ ]{ } { }Pe  S Ks P = Kg +−δ                                            (3.64) 
 
Considering compatibility between piled raft displacement δi and soil settlement si, the 
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following linear system of equations of the piled elastic raft can be obtained: 
 

[ ] [ ][ ]{ } { } { }Pe P =   Kg + Ks +δ                                            (3.65) 
 

3.2.9 Iteration method 
 
In this paper, a proposed iteration method is developed to solve the system of linear 
equations, Eq. (3.59), of piled raft. The main idea of this method is that pile stiffness is 
determined from load-settlement relation due to self-settlement of pile. This pile stiffness is 
simply added to that of the raft. The piled raft is solved for each iteration cycle until the 
compatibility between settlements of raft, piles and soil is achieved. The iteration process of 
the method can be described in the following steps: 
 
1 Generate the flexibility matrices due to pile-pile, pile-raft and raft-soil interactions, 

[Fb], [Is], [Cb], [Cs], [Jr] and [Cr]. 
 
2 Find the soil stiffness matrix of the raft due to raft-soil interaction, [Kr] = [Cr]-1. 
 
3 Using applied load on the raft, assume an average stress on raft nodes and piles then 

find the initial loads on piles {Qp} and the initial forces on raft nodes {Qr}. 
 
4 From the load-settlement curve according to DIN 4014 [5], find the values of: 

- Soil stiffness matrix of the pile [Kp], 
- Tip forces on piles {Qb} due to pile loads {Qp}, and 
- Skin forces on piles {Qs} due to pile loads {Qp}. 

 
5 Generate the entire stiffness matrix of piles and raft [Ks] by adding the soil stiffness of 

the pile [Kp] computed in step 4 to the soil stiffness of the raft [Kr]. 
 
6 Determine the vector {Pr} in Eq. (3.47) due to the contact forces and the computed tip 

and skin forces on piles in step 4. Then, find the vector {Pe} from Eq. (3.52). 
 
7 Carry out the analysis of piled raft , Eq. (3.59) for rigid piled raft or Eq. (3.65) for 

elastic piled raft, to get the pile settlements {Sv} and contact forces {Qr}. 
 
8   Compare the settlement from cycle i with that of cycle i+1 to find the accuracy of the 

solution. 
 
9 If the accuracy from step 8 is less than a specified tolerance ε then from the load-

settlement curve according to DIN 4014 [5], determine the new pile loads {Qp} due to 
computed settlements {Sv} and go to step 4. 

 
The steps 4 to 9 are repeated until the accuracy reaches to a specified tolerance ε, which 
means that a sufficient compatibility between settlements of piles, raft and soil are achieved in 
the piles-raft-soil interface. 
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Figure 3-9 Flowchart of the iteration process in the program ELPLA 
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3.3 Case study: Messeturm piled raft for the tallest building in Europe 

3.3.1 Description of the problem 
 
Messeturm was the tallest high-rise building in Europe until 1997, Figure 3-10. The building 
lies in Frankfurt city in Germany. It is 256 [m] high and standing on a piled raft foundation.  
 
 

 
Figure 3-10 Messeturm1

                                                 
1 http://de.wikipedia.org/wiki/Messeturm_(Frankfurt) 
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Using instruments installed inside this foundation, an extensive measuring program was 
established to monitor the behavior of the building. Because these instruments record raft 
settlements, raft contact pressures and loads on pile heads and along pile shafts, the building 
was a good chance for many authors to verify their analysis methods for piled raft. Since 
Messeturm was built many authors had studied its behavior. Some of them are Sommer 
(1989), Sommer & Katzenbach (1990), Thaher (1991), Sommer et al. (1991), EL-Mossallamy 
(1996), Katzenbach et al. (2000), Reul & Randolf (2003) and Chow & Small (2005). 
 
Figure 3-11 shows a layout of Messeturm with the piled raft according to Chow & Small 
(2005). The building has a basement with two underground floors and 60 stories with a total 
estimated load of 1880 [MN]. The foundation is a square piled raft of 58.8 [m] side founded 
on Frankfurt clay at a depth 14 [m] under the ground surface. Raft thickness varies from 6 [m] 
at the middle to 3 [m] at the edge. A total of 64 bored piles with equal diameters of 1.3 [m], 
are arranged under the raft in 3 rings. Pile lengths vary from 26.9 [m] for the 28 piles in the 
outer ring to 30.9 [m] for the 20 piles in the middle ring and to 34.9 [m] for the 16 piles in the 
inner ring. The subsoil at the location of the building consists of gravels and sands up to 8 [m] 
below the ground surface underlay by layers of Frankfurt clay extending to great depth of 
more than 100 [m] below the ground surface. The groundwater level lies at 4.75 [m] under the 
ground surface.   
 
The construction of Messeturm started in 1988 and finished in 1991. According to 
Katzenbach et al. (2000), the recorded settlement at the center of the raft in March 1990 was 
8.5 [cm], while the last recorded settlement in December 1998 was 14.4 [cm] according to 
Reul & Randolf  (2003). If Messeturm stands on a raft only, the expected settlement would be 
between 35 [cm] and 40 [cm] based on geotechnical studies according to Sommer (1989). 
Therefore, to reduce the settlement, a piled raft was considered where the expected final 
settlement in this case would be between 15 [cm] and 20 [cm] according to Sommer & 
Katzenbach (1990). Using the available data and results of the Messeturm piled raft, which 
have been discussed in details in the previous references, the present piled raft analysis is 
evaluated and verified. Thus by dealing the piled raft as a rigid foundation where the rigid 
analysis of piled raft is considered as an easy method to check results of any other 
complicated models. 
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Figure 3-11 Layout of Messeturm with piled raft after Chow & Small (2005) 

3.3.2 Analysis of the piled raft 
A series of comparisons are carried out to evaluate the nonlinear analysis of piled raft using 
DIN 4014 [5] for load-settlement relation. In which, results of other analytical solutions and 
measurements are compared with those obtained by the present analysis. In the comparisons 
the present analysis is termed NPRD.  
 
Taking advantage of the symmetry in shape, soil and load geometry about both x- and y-axes, 
the analysis is carried out for a quarter of the piled raft. The raft is divided into elements with 
maximum length of 2.0 [m] as shown in Figure 3-12. Element sizes in x-and y-directions for a 
quarter of the raft are: 
 
2*2.2+2.69+2*1.74+0.89+3*2.35+2.06+2.65+1.76+2*2.2=29.4 [m]. 
 
Similarly, piles are divided into elements with 2.0 [m] in maximum length. 
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B/2=29.4 [m]

Pile length 26.9 [m]

Pile length 30.9 [m]

Pile length 34.9 [m]

 
 
Figure 3-12 Mesh of Messeturm piled raft with piles (Max. element length = 2.0 [m]) 

3.3.2.1 Comparison with Randolph’s analysis 

To examine NPRD for the Messeturm piled raft, results are compared with those using 
Randolph’s analysis, which was carried out by EL-Mossallamy (1996). The raft is considered 
to be rigidly supported on equal rigid piles with an average length equal to 30.15 [m]. A soil 
layer of H=90 [m] with a constant elastic modulus is considered. Two cases of analyses are 
carried out with two different soil parameters as indicated in Table 3-1. For NPRD, the load-
settlement relation is determined using an average undrained cohesion of cu = 300 [kN/m2] in 
both cases. The uplift pressure on the raft due to groundwater is considered to be Pw=275 
[kN/m2]. Consequently, the total effective applied load on the raft including own weight of 
the raft and piles is assumed to be N=1600 [MN]. 
 
Table 3-2 summarizes the results of the immediate and total settlements for Randolph’s 
analysis (1994) and NPRD while Table 3-3 summarizes the results of the bearing factors of 
piled raft for both of the analyses. Although the principles of both of the analyses are 
different, the results indicate a good agreement in settlement and a difference in bearing factor 
of piled raft ranges from 3.4 [%] to 7.7 [%]. 
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Table 3-1 Soil properties used in Randolph’s analysis and NPRD 
 

 
Case No. 

 
Undrained conditions 

 
Drained conditions 

 
Es [MN/m2] 

 
νs [-] 

 
E´s [MN/m2] 

 
ν´s [-]  

Case 1 
 

70.4 
 

0.5 
 

62.4 
 

0.33 
 

Case 2 
 

91.4 
 

0.5 
 

81.0 
 

0.33 
 

Table 3-2 Settlements s [cm] (Randolph’s analysis vs. NPRD)  
 

Case No. 

 
Immediate 

 
Total 

 
Randolph’s 

analysis 

 
NPRD 

 
Randolph’s 

analysis 

 
NPRD 

 
Case 1 

 
13.0 

 
12.9 

 
17.1 

 
18.1 

 
Case 2 

 
10.0 

 
10.1 

 
13.7 

 
14.0 

 

Table 3-3 Bearing factors of piled raft αkpp [%] (Randolph’s analysis vs. NPRD)  
 

Case No. 

 
Immediate 

 
Total 

 
Randolph’s 

analysis 

 
NPRD 

 
Randolph’s 

analysis 

 
NPRD 

 
Case 1 

 
35.2 

 
31.8 

 
44 

 
39 

 
Case 2 

 
35.2 

 
27.5 

 
44 

 
38 

 

3.3.2.2 Comparison with Thaher’s analysis 

To analyze piled raft, Thaher (1991) had presented an analytical model using equivalent raft 
method, which was checked by the centrifuge model test results. He applied his model to the 
Messeturm piled raft to assess the rigid settlement.    
 

3.3.3 Soil properties 
The average clay properties used in Thaher’s analysis, can be described as follows: 
 
Modulus of compressibility: 
Based on the back analysis presented by Amann et al. (1975), the distribution of modulus of 
compressibility for loading of Frankfurt clay with depth is defined by the following empirical 
formula:  
 

( )z  E = E sos 0.35 + 1                                                  (3.66) 
 
while that for reloading is: 
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[ ]mMN/ 70 2  = W s                                                    (3.67) 

 
where: 
Es  Modulus of compressibility for loading, [MN/m2]. 
Eso  Initial modulus of compressibility, Eso=7 [MN/m2].  
z Depth measured from the clay surface, [m]. 
Ws  Modulus of compressibility for reloading, [MN/m2]. 
 
Undrained cohesion: 
The undrained cohesion cu of Frankfurt clay increases with depth from cu=100 [kN/m2] to 
cu=400 [kN/m2] in 70 [m] depth under the clay surface according to Sommer & Katzenbach  
(1990). To carry out NPRD an average undrained cohesion of cu=300 [kN/m2] is considered. 
 
Poisson’s ratio: 
Poisson’s ratio of Frankfurt clay is taken to be νs=0.25 [-]. 
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To carry out the analysis, the subsoil under the raft is considered as indicated in the boring log 
of Figure 3-13 that consists of 10 soil layers. The total depth under the ground surface is taken 
to be 102.83 [m]. 
 

BP1

G+S

3.00

E = 75000[kN/m2],Fhi = 
W = 225000[kN/m2],C = 
Gam = 18[kN/m3],Nue = 

G+S

4.75

E = 75000[kN/m2],Fhi = 
W = 225000[kN/m2],C = 
Gam = 8.19[kN/m3],Nue  

T

22.83

E = 19000[kN/m2],Fhi = 
W = 70000[kN/m2],C = 3
Gam = 8.7[kN/m3],Nue = 

T

32.83

E = 44000[kN/m2],Fhi = 
W = 70000[kN/m2],C = 3
Gam = 8.7[kN/m3],Nue = 

T

42.83

E = 68000[kN/m2],Fhi = 
W = 70000[kN/m2],C = 3
Gam = 8.7[kN/m3],Nue = 

T

52.83

E = 93000[kN/m2],Fhi = 
W = 93000[kN/m2],C = 3
Gam = 8.7[kN/m3],Nue = 

T

62.83

E = 117000[kN/m2],Fhi  
W = 117000[kN/m2],C = 
Gam = 8.7[kN/m3],Nue = 

T

72.83

E = 142000[kN/m2],Fhi  
W = 142000[kN/m2],C = 
Gam = 8.7[kN/m3],Nue = 

T

82.83

E = 166000[kN/m2],Fhi  
W = 166000[kN/m2],C = 
Gam = 8.7[kN/m3],Nue = 

T

92.83

E = 191000[kN/m2],Fhi  
W = 191000[kN/m2],C = 
Gam = 8.7[kN/m3],Nue = 

T

102.83

E = 215000[kN/m2],Fhi  
W = 215000[kN/m2],C = 
Gam = 8.7[kN/m3],Nue = 

   

   

G, Gravel

S, Sand

T, Clay

 
Figure 3-13 Boring log 
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Table 3-4 lists the results of settlement, bearing factor of piled raft and tip resistance obtained 
by NPRD compared with those obtained by Thaher (1991). The table shows that settlement 
and bearing factor of piled raft for the both analyses are nearly the same. Only, a difference of 
0.6 [MN/m2] in the maximum tip resistance is found. 
 
In Table 3-5, load on each pile in inner, middle and outer rings obtained by both NPRD and 
the centrifuge model test by Thaher (1991) are shown. Also, the table includes the measured 
total pile loads after the completion of the structural frame, which presented by Sommer et al. 
(1991). The table indicates that results are in a good agreement. 
 
Also, Table 3-5 shows that the piles transfer the load to the soil mainly by skin friction, as 
observed from the measurements (Katzenbach et al. (2000)). The measurements indicated that 
the load distribution within the pile group is quite homogeneous. This behavior is also noticed 
in NPRD not only for the pile load but also for the pile settlement.  
As shown in Table 3-6, NPRD can introduce the individual settlement in the pile due to pile 
load itself or due to pile-pile and pile-raft interactions. Table 3-6 shows that the most of the 
settlement is due to self settlement of the pile compared with the settlement due to pile-pile 
and pile-raft interactions for loading or reloading. The self-settlement of the pile ranges 
between 52 [%] and 55 [%] of the total settlement in the pile. 
 
 

Table 3-4 Comparison between results obtained by Thaher’s analysis with those obtained by 
NPRD  

 
Analysis 

 
Settlement  

sr 
[cm] 

 
Bearing factor 

αkpp 
[%] 

 
Min. tip 

resistance 
[MN/m2] 

 
Max. tip 

resistance 
[MN/m2] 

 
Thaher’s analysis 

 
19.00 

 
40.00 

 
1 

 
1.5 

 
NPRD 

 
18.77 

 
40.44 

 
1 

 
2.1 

 

Table 3-5 Pile load for NPRD, centrifuge model test and measured results  
 

Pile ring 

 
NPRD 

 
Total pile 
load from 
centrifuge 
model test  

[MN] 

 
Measured 

total pile load 
[MN] 

 
Tip force 

[MN] 

 
Shaft force 

[MN] 

 
Total pile 

load 
[MN] 

 
Inner ring 

 
2.71 

 
8.55 

 
11.26 

 
14 

 
11 

 
Middle ring 

 
2.74 

 
7.57 

 
10.31 

 
13 

 
13 

 
Outer ring 

 
2.72 

 
6.59 

 
9.31 

 
10 

 
10 
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Table 3-6 Settlement in piles 
 

 
 

Pile ring 

 
Self 

settlement 
sp 

[cm] 

 
Settlement due to pile-pile  
and pile-raft interactions 

 
Total 

settlement 
sr 

[cm] 

 
Self/Total 

 
sp/sr 
[%] 

 
Loading 

se 
[cm] 

 
Reloading 

sw 
[cm] 

 
Inner ring 

 
9.75 

 
4.97 

 
4.05 

 
18.77 

 
52 

 
Middle ring 

 
10.29 

 
4.78 

 
3.70 

 
18.77 

 
55 

 
Outer ring 

 
9.86 

 
5.10 

 
3.81 

 
18.77 

 
53 

 
Comments:  
 
The maximum difference between the settlement in step i and next step i+1 is considered as 
an accuracy number. In this case study, the accuracy number was chosen to be 0.0001 [cm].  
 
For a single run of analysis, the results were obtained in relatively short time (17 [Sec] for 
analysis a and 1.2 [Min] for analysis b using Pentium 4 PC with 512 MB RAM). This is 
related to the following parameters:   
 

- Flexibility coefficients due to pile-pile interaction are determined only for two 
forces; shaft and base forces. 

 
- As the settlement due to load on pile itself is determined from DIN 4014 [5], it can be 

without numerical problems using closed form equations to determine flexibility 
coefficients instead of equations that must be evaluated by numerical integration.  

 
- There is no need to determine a global stiffness matrix for the soil since the 

flexibility matrix is generated every step in the iteration cycle. 
 

- Instead of determining flexibility coefficients due to pile-pile interaction from 
settlement equations, the coefficients are determined from the load-settlement relation 
according to DIN 4014 [5]. 

 
This case study shows that NPRD is not only an acceptable method to analyze piled raft but 
also a practical one for analyzing large piled raft problems. Beside that NPRD gives a good 
agreement with previous theoretical and empirical nonlinear analyses of piled raft, it takes 
less computational time compared with other complicated models using three dimension finite 
element analysis. As further comparative example to proof that, an analysis of Messeturm 
using three dimensional finite element analysis after Randolf (1994) and Reul & Randolf 
(2003) gave a settlement of 17.4 [cm] at the center while that of NPRD gave 18.77 [cm]. 
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Chapter 4 

4 Analyzing friction piles in clay soil 

4.1 Introduction 
Settlements of a foundation may be calculated using either flexibility or stress coefficients-
technique. Analyzing foundation on elastic soil layers may be carried out using flexibility 
coefficients-technique, while that on consolidated soil is preferred to carry out by stress 
coefficients-technique. In this case, compression index of the soil is used to define the 
consolidation characteristics of the clay. It is known that the compression index Cc, which is 
obtained from the e-log σ (e: void ratio, σ: consolidation pressure) curve of the consolidation 
test, will be the same for any stress range on the linear part of the curve, while the coefficient 
of volume change mv (inverse of the modulus of compressibility Es=1/mv) will vary 
according to the stress range (Figure 4-1). Therefore, to calculate the real consolidation 
settlement for a thick clay layer and because the stress from the foundation varies with depth, 
a variable modulus of compressibility must be obtained, even for homogenous layer.  
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Figure 4-1 Void ratio-stress relationship 

The problem when analyzing a foundation on clay layer is that determination of the non-linear 
increment of the vertical stress on the layer due to the unknown contact pressure at the soil-
pile interface. Griffths (1984) presented charts for average vertical stress increment beneath a 
corner of a uniformly loaded rectangular area based on numerical integration of existing 
solutions. Masih (1993) and (1994) considered the effect of settlement caused by cohesive 
soil consolidation on the structure. The analysis dealt with elastic speared footings using one-
point method. El Gendy (2003) introduced an analysis of rigid circular raft on a finite clay 
layer by calculating the stress at mid-depth of soil element. Increment of vertical stress is 
obtained by numerical integration. El Gendy (2006) developed stress coefficients for 
triangular loaded elements and point load acting on the entire clay sub-layer through closed 
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form equations. These coefficients can be used for any irregular shape of foundations on 
multi-clay layers. Analyses carried out by the methods mentioned previously were applied on 
spared footings and rafts on clay. 
 
The problem of raft on clay soil taking into account soil-structure interaction is a complicated 
nonlinear problem as shown by EL Gendy (2006). It will be more complicated for piled raft. 
This is because the increment of stress in soil depends on the unknown contact pressure at the 
soil-pile-raft interface. In rigid piled raft, the contact pressure distribution at the soil-pile-raft 
interface on a homogenous soil layer is independent from elastic properties of the soil. This 
advantage reduces considerably the analysis if the contact pressure is obtained from other 
available solution. In this case half of the problem is solved. Consequently, using the known 
contact pressure from other analysis, enables to derive a practical solution for single pile, pile 
groups, piled raft on clay soil. 
 
El Gendy (2007) presented a numerical procedure to determine the magnitude of 
consolidation settlement of friction piles in clay soil using stress coefficients-technique. He 
derived closed form equations for determining the increment of non-linear stress in clay layers 
caused by contact forces generated at the pile-soil interface. Using these stress coefficients, an 
analysis for analyzing single pile, pile groups and piled raft on clay soils to predict the 
consolidation settlement may be carried out. In the analysis, the contact pressure is obtained 
from the elastic solution of the problem. This enables to determine the nonlinear increment of 
stress in the soil layers. Consequently, the consolidation settlement can be calculated using 
the compression index and void ratio parameters. The computation may be carried out only at 
one point one the raft to get the settlement. 
 
This chapter described stress coefficients developed by El Gendy (2007) to determine the 
magnitude of consolidation settlement of friction piles in clay soil. Friction pile is analyzed as 
single pile or as a member in pile groups or piled raft. However, these coefficients can be 
applied on elastic or rigid piled raft, only the rigid piled raft will be used to show the validity 
of the method. Furthermore, piled rafts is usually used for high structure with high rigidity. 
Analysis of elastic piled raft may be carried out similar to that of rafts on multi-clay layers 
proposed by El Gendy (2006). 
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4.2 Numerical Modeling 

4.2.1 Formulation of stress coefficients 
In the analysis, the pile is divided into a number of shaft elements with m nodes and a circular 
base as shown in Figure 4-2a. To carry out the analysis, pile shaft elements are represented by 
line elements as indicated in Figure 4-2b. All stresses acting on shaft elements and on the base 
are replaced by a series of concentrated forces acting on line nodes. 
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Figure 4-2 Pile geometry and elements 

The pioneer authors of pile analysis such as Poulos & Davis (1968) and Butterfield & 
Banerjee (1971) integrated numerically coefficients of flexibility using Mindlin’s solution for 
point load within a semi-infinite mass. Analysis of pile using numerical coefficients increases 
computation time significantly, especially in large pile problems. However, the present 
analysis depends on stress coefficients determined from elastic theory using Mindlin’s 
solution, an analytical derivation of coefficients of stresses is presented. Closed form 
equations for these coefficients are derived in next paragraphs. 

4.2.1.1 Stress coefficient ci, j(k) of layer k at point i due to a unit force on the point j  

It is convenient when calculating consolidation settlement to consider the stress occurs on the 
vertical direction only. In this case Poisson’s ratio of the soil may be eliminated from stress 
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equations. Stress coefficient can be derived from Mindlin’s equation for determining the 
displacement when omitting Poisson’s ratio from this equation. The displacement at point i 
due to a point load acting at point j beneath the surface in a semi-infinite mass (Figure 4-3) is 
expressed as: 

)()( zIE
Q

 = zw j i,
s

j
i                                                       (4.1) 

 
where: 
Es Modulus of elasticity of the soil, [kN/m2]. 
Qj  Point load acting at point j in the soil mass, [kN]. 
w(z)i Displacement in point i at depth z under the surface, [m]. 
Ii, j(z)  Displacement factor of a node i at depth z  
 under the surface due to a load at point j, [1/m]. 
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Figure 4-3 Geometry of Mindlin’s problem 

The displacement factor Ii, j(z) when eliminating Poisson’s ratio is given by: 
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where: 
c Depth of the point load Qj from the surface, [m]. 
z Depth of the studied point i from the surface, [m]. 
r  Radial distance between points i and j, [m]. 
 
For a finite layer k (Figure 4-4), the displacement in the entire layer may be obtained from: 
 

iii z w- z w= kw )()()( 21                                           (4.3) 
where: 
w(k)i Displacement in a layer k beneath i, [m].  
w(z1)i Displacement in semi-infinite mass beneath i, at a depth z1 under the surface, [m]. 
w(z2)i Displacement in semi-infinite mass beneath i, at a depth z2 under the surface, [m]. 
z1 Start depth of the soil layer k from the surface, [m]. 
z2 End depth of the soil layer k from the surface, [m]. 
 
Displacement in a soil layer k may be also expressed as: 
 

hk  
E

=  kw j i,
s

i  )(σδ1)(                                                   (4.4) 

 
where: 
δσi, j(k)  Stress in a soil layer k beneath i due to a load at point j, [kN/m2]. 
h   Thickness of the soil layer k, [m] 
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Ground surface
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i
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w(z2)i
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z2

Qj

c
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Figure 4-4 Settlement in a soil layer (k) 

The stress δσi, j(k) in the soil layer can be obtained by Equating Eq. (4.3) to Eq. (4.4), which 
leads to: 
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           (4.5) 

 
Equation (4.5) is rewritten in a simple form as: 
 

[ ]  QzIzIh
 = k jj i,j i,j i, )(-)(1)(σδ 21                                           (4.6) 

 
or 
 

 Qkc = k jj i,j i, )()(σδ                                                     (4.7) 
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where: 
Ii, j(z1)  Displacement factor due to a load at point j in semi-infinite  

mass beneath i, at a depth z1 under the surface, [1/m2]. 
Ii, j(z2)  Displacement factor due to a load at point j in semi-infinite  

mass beneath i, at a depth z2 under the surface, [1/m2]. 
ci, j(k)  Stress coefficient for a layer k beneath i due to a unit load at point j, [1/m2].  
 
The stress coefficient ci, j(k) is given by: 
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           (4.8) 

 
 

4.2.1.2 Stress coefficient fi, b(k) of a layer k at node i due to a unit force on the base b  

Replacing the redial distance r in Eq. (4.8) by the radius of the base ro [m], gives the stress 
coefficient fi, b(k) of a layer k at node i due to a unit force Qb = 1 [kN] acting on the base b.  
 

4.2.1.3 Stress coefficient fb, b(k) of a layer k at the base b due to a unit force on the base 
itself 

The base b of the pile has a circular loaded area of radius ro [m] and a uniform load q = Qb / π 
ro

2  [kN/m2] as shown in Figure 4-5. The stress coefficient fb, b(k) of a layer k at the base 
center b due to a unit load Qb = 1 [kN] at the base itself can be obtained from: 
 

[ ]∫∫
or

j i,j i,
o

b b, d dr r zIzIh
 

r 
 = kf

0 21

2π

02
θ)(-)(1

π
1)(                              (4.9) 

 
The integration of the stress coefficient can be obtained analytically as: 
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Soil layer (k) h
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Figure 4-5 Geometry of the base to find the stress coefficient δ(k)b, b at the center 

4.2.1.4 Stress coefficient fi, j(k) of a layer k at node I due to a unit shear force on a node 
shaft j 

To avoid the significant computations when determining the stress coefficients due to shaft 
stress, the shaft stress τ [kN/m2] is replaced by an equivalent line load. The shaft element j of 
the pile has a length l [m] and a line load T = Qsj / l [kN/m] as shown in Figure 4-6. The stress 
coefficient fi, j(k) for a layer k at a node i due to a unit load Qsj = 1 [kN] at a shaft element j 
can be obtained from: 
 

[ ]  dc zIzIh
  

l
1 = kf

l

l j i,j i,j i, ∫
2

1

)(-)(1)( 21                                     (4.11) 

 
The integration yields to: 
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( )I + I + I + I + I 
h l 

 = kf j i, 54321 π8
1)(                                       (4.12) 

 
where terms I1 to I5 are given by: 
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where: 
l1  Start depth of the line load T or the shear stress τ from the surface, [m]. 
l2  End depth of the line load T or the shear stress τ from the surface, [m]. 
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l  Length of the line load T or the shear stress τ, [m]. 
r1  Radial distance between point i and j [m]. 
 
 

dc

Ground surface

l1
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c

c

l

i

Soil layer (k) h
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z2

(k)i, j

 
Figure 4-6 Geometry of line load to find the stress coefficient δ(k)i, j at the center 

4.2.1.5 Stress coefficient fb, j(k) of a layer k at the base b due to a unit shear force on a 
node shaft j 

The pile has a radius ro [m], while the shaft element j has a length l [m] and a shear stress τ = 
Qsj / 2 π ro l  [kN/m2] as shown in Figure 4-7. The stress coefficient fb, j(k) of a layer k at the 
base center b due to a unit load Qsj = 1 [kN] at a shaft element j can be obtained from: 
 

[ ]∫∫
2

1

θ)(-)(1
 π2

)( 21

2π

0

l

l j i,j i,j b, d dc zIzIh
  

l 
1 = kf                            (4.18) 

 
The integration yields to: 
 

( )J + J + J + J + J 
 l 

= kf j b, 54321 π8
1)(                                      (4.19) 

 
Replacing r1 by ro in Eqns (4.13) to (4.17), gives terms J1 to J5. 
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Figure 4-7 Geometry of cylindrical surface stress to find the stress coefficient δ(k)b, j at 

the center 

4.2.2 Modeling single pile 

4.2.2.1 Increment of vertical stress 

A deeply extended clay layer is considered to simulate the half-space soil medium. The layer 
is subdivided into l sub-layers of equal thickness as shown in Figure 4-8. The increment of 
vertical stress in a soil layer k at a point i is attributed to stresses caused by all contact forces 
on that layer.  
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Figure 4-8 Pile in a deeply extended clay layer 

Considering a point i lies on the pile axis, the increment of vertical stress in a soil layer k due 
to shear forces on all m nodes and due to the base force is expressed as: 
 

Qb kf + Qs kf  = k b i,jj i,

m

j

)()()σ(
1=
∑∆                                       (4.20) 

where: 
Δσ(k)  Increment of vertical stress in a soil layer k at pile i, [kN/m2]. 
Qsj  Shear force on node j, [kN]. 
Qb   Force on the base b, [kN]. 

4.2.2.2 Consolidation settlement 

Using clay properties Cc and eo, the consolidation settlement due to all contact forces on a pile 
is given by: 
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where: 
Sc Consolidation settlement of the pile i, [m]. 
Cc Compression index, [-]. 
eo Initial void ratio, [-]. 
σo(k)  Initial overburden pressure in a layer k, [kN/m2]. 
l  Number of clay layers 

4.2.2.3 Contact pressure along the pile 

Due to the natural geometry of the pile where the length is much greater than the diameter, the 
pile in vertical direction can be considered as a rigid body. In rigid body motion, points on the 
rigid body move downward with a constant displacement. Many authors solved the problem 
of contact pressure distribution that gives a constant displacement in the half-space medium at 
all points in a rigid pile, some of them are Poulos & Davis (1968) and Butterfield & Banerjee 
(1971). It is found that the contact pressure is independent on the elastic constants of the half-
space medium. El Gendy (2003) showed that the contact pressure distribution under a rigid 
raft on a finite clay layer is independent from the soil properties. El Gendy (2006) showed 
also that the distribution of contact pressure for rafts on deeply extended clay layer is quite 
similar to that on half-space medium of elastic layer. This concept is used to determine the 
consolidation settlement of an extensive, homogeneous deposit of clay. The stress causes a 
constant elastic displacement in the half-space medium must also cause a constant 
consolidation settlement in a deeply extended clay layer. Therefore, the formula used to 
determine the contact pressure distribution along a rigid pile on elastic medium is also valid 
for a rigid pile on consolidated medium using the soil properties Cc and eo. Consequently, the 
contact pressure becomes known for the problem. In this case, problem unknowns are 
considerably reduced to only the uniform consolidation settlement. Available formula used to 
determine the contact pressure along a rigid pile is presented by El Gendy (2007). The contact 
force on a pile of n nodes, Figure 4-2, is given by: 
 

k 

k Ph
 = Q

j i,

n

j=

n

=i

j i,

n

j=
i

∑∑

∑

11

1                                                    (4.22) 

 
where: 
Qi  Contact force on node i, [kN]. 
Ph Force on the pile head, [kN]. 
ki, j Stiffness matrix coefficient. 
 
The stiffness matrix coefficients in Eq. (4.22) depends only on the geometry of pile elements 
and soil layers. To get these coefficients, soil flexibility matrix is generated first with omitting 
soil elastic properties from flexibility equations by replacing modulus of elasticity by 1 and 
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Poission’s ratio by 0. Then, inverting flexibility matrix, gives the soil stiffness matrix, which 
contains the required coefficients.   

4.2.3 Modeling pile groups and piled raft 
Only piled raft analysis is presented. Freestanding raft is a special case of piled raft without 
contacting between raft and soil. It can be analyzed in the same manner of piled raft. Consider 
the piled raft of a centric load shown in Figure 4-9 where the settlement in this case is defined 
by the rigid body translation Sc at the center (xc, yc) of the raft. 

4.2.3.1 Increment of vertical stress 

Equation (4.20) for the increment of vertical stress in a soil layer k under the center (xc, yc) of 
the piled raft may be rewritten in general form as: 
 

Q kI  = k jj i,

n

j
c )()(σ

1=
∑∆                                                (4.23) 

 
where: 
Δσc(k) Increment of vertical stress in a soil layer k under the center of the raft, [kN/m2]. 
Qj  Contact force on node j, [kN].  
n Total number of contact nodes on the piled raft. 
Ii, j(k)  Stress coefficient for layer k under node i  
 on the raft due to a unit force on node j, [1/m2].  
 
For pile-pile interaction or pile-raft interaction the stress coefficients Ii, j(k) are determined 
from Eq. (4.8) to Eq. (4.19), while those for raft-raft interaction or raft-pile interaction are 
determined according to El Gendy (2006). 
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a) Piled raft on a deeply extended clay layer

b) Soil settlement  
Figure 4-9 Modeling piled raft 

4.2.3.2 Consolidation settlement 

The consolidation settlement due to all contact forces on the pile under the center of the raft is 
given by: 
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4.2.3.3 Contact pressure on the piled raft nodes 

Similar to Eq. (4.22), the contact force on a node i of the piled raft is given by: 
 

k 

k N
 = Q

j i,

n
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n
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11

1                                                       (4.25) 

 
where N is the resultant of applied loads acting on the raft, [kN]. 
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4.3 Numerical Results 

4.3.1 Test example: Verification of a piled raft on a deeply extended clay layer 
A square raft of a side L = 10.0 [m] on a deeply extended clay layer is chosen to verify the 
present analysis of a piled raft on consolidated clay deposits. The raft is supported by 25 piles. 
Each pile is 10.0 [m] long and 0.5 [m] diameter. Piles are spaced at 2.0 [m] centers on a 
square grid as shown in Figure 4-10. The raft is subjected to a centric vertical load of N = 15 
[MN]. To check the accuracy of the analysis, the raft with piles is analyzed for two different 
cases: 
 

1. Freestanding raft (pile groups) 
2. Piled raft  

 

10
.0

 [m
]  

 

  

10.0 [m] 

a 

b 

c c 

b 

a 
 

Figure 4-10 Mesh of raft with piles 

4.3.1.1 Clay properties  

The clay is assumed to have the following properties: 
Term of compression index and initial void ratio  Cc/(1+eo)  = 0.001 [-] 
Dry unit weight of the clay     γs  = 18.5  [kN/m3] 

4.3.1.2 Analysis of the raft 

Raft is subdivided into 100 square elements; each is 1.0 [m] side, while the pile is subdivided 
into 5 line elements; each is 2.0 [m] length. The contact pressure distribution along piles and 
under the raft is obtained with the assumption of a semi-infinite soil layer using the elastic 
analysis. In consolidation settlement calculation, the clay layer is considered as semi-infinite 
soil layer when the clay has a deep thickness of z = 100 [m]. The clay layer is subdivided into 
sub-layers each of thickness h = 20.0 [m]. Definition of rigid body movement can be used to 
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verify the analysis. For a rigid body subjected to a vertical centric load, the body moves 
downward with a uniform displacement. Therefore, the consolidation settlement for the 
freestanding and piled rafts must be uniform on all points on rafts. In the analysis of raft as 
rigid body, computing the consolidation settlement at the raft centroid is sufficient. But to 
check the linearity of the consolidation settlement, settlements are determined for all points on 
raft. 

4.3.1.3 Results and discussions 

Consolidation settlements at sections a to c (Figure 4-10) for the freestanding raft are shown 
in Figure 4-11, while those for piled raft are shown in Figure 4-12. Although the 
consolidation settlement is determined under all points on the raft, but the consolidation 
settlement is distributed linearly under the raft with maximum difference 4 [%] in case of a 
freestanding raft and 3 [%] in case of piled raft in respect to fitting curves. The piled raft 
bearing factor is found to be αkpp = 90 [%], this is related to arranging piles in narrow 
distances. Consequently, the difference in consolidation settlements for both cases is small. 
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Figure 4-11 Consolidation settlement at sections a to c for freestanding raft 
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Figure 4-12 Consolidation settlement at sections a to c for piled raft 

4.3.2 Case study 1: Piled raft of Stonebridge Tower 
Stonebridge piled raft analysis and measurements discussed by Hemsley (2000) and reported 
by Cooke et al. (1981) are considered to chick the accuracy of the present analysis. 
Stonebridge is a tower of 16-storey floors at Stonebridge Park in north London, England. The 
tower is 43 [m] high. The foundation is rectangular piled raft of area 43.3 [m] by 19.2 [m]. 
The estimated total load on the raft gives an average applied uniform load of 187 [kN/m2]. 
Raft thickness is 0.9 [m]. A total of 351 bored piles are located under the raft. All piles have a 
length of l = 13 [m] and a diameter of D = 0.45 [m]. Piles are arranged on 1.6 [m] by 1.5 [m] 
grid. Figure 4-13 shows a mesh of Stonebridge raft with piles. The tower is founded on a 
thick layer of London clay which, at this site, extends to the ground surface. As, the building 
has no underground floors, raft is located close to the ground surface.  
 
The tower is constructed between 1973 and 1975, the recorded average settlement of the raft 
was about 1.8 [cm] after four years from the end of construction. Later measurements indicate 
that differential raft settlement is small. Because the stiffness of the cross-wall superstructure 
is high. Padfield & Sharrock (1983) modeled the raft by plate-bending finite elements, with 
an equivalent raft thickness of 4.5 [m] to take account of the stiffness of the superstructure. 
The soil is treated as a multi-layered elastic half-space subjected to loads both at the surface 
and at depth at the pile locations. Raft-pile interaction is neglected and an iterative process is 
used to match raft and soil settlement. They obtained a good a agreement between the 
observed and computed results. The foundation of Stonebridge is an ideal case study to verify 
the present analysis because conditions of this piled raft coincide with the assumptions of the 
present analysis. The piled raft is a full rigid on a deeply extended clay layer. Using available 
data and results of Stonebridge piled raft the present analysis is evaluated and verified for 
analyzing a piled raft on clay soil. 
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43.3 [m]

 
Figure 4-13 Mesh of Stonebridge raft with piles 

To show the difference between results when analyzing piled raft of Stonebridge by methods used  
variable soil modulus, piled raft of Stonebridge is analyzed by the following methods: 
 
- Nonlinear analysis of piled raft using DIN 4014 (NPRD). 
- Nonlinear analysis of piled raft using hyperbolic function (NPRH). 
- Linear analysis of piled raft (LPR). 
 
The method NPRD was developed by El Gendy et al. (2006), while those of  NPRH and LPR 
were developed by El Gendy (2007). 

4.3.2.1 Soil properties 

The following section describes all soil parameters and constants those used to carry out the 
present analysis and other selected methods for comparison. London clay is classified as an 
overconsolidated clay. The undrained cohesion of London clay increases with depth and can 
be approximated according to Hong et al. (1999) by the following linear relation: 
 

z =cu 67.6150 +                                                        (4.26) 
 
where: 
cu  Undrained cohesion of London clay, [kN/m2]. 
z Depth measured from the clay surface, [m]. 
 
 
Hong et al. (1999) used a ratio of 200 between the shear modulus and the undrained cohesion 
to get a variable modulus of the soil. Taking a Poisson’s ratio of the soil νs=0.25 [-], leads to: 
 

( )z +  E = E sos 0.0445 1                                                 (4.27) 
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where: 
Es  Modulus of compressibility of London clay, [kN/m2]. 
Eso  Initial modulus of compressibility, Eso=75000 [kN/m2].  
 
A relationship between the modulus of compressibility, compression index and initial void 
ratio for overconsolidated clay (σo+Δσav>σc) may be expressed as (Mayne & Poulos (1999)): 
 

( )
)10ln()σ(

 1
v

r

o
s C

e+ 
  = E                                               (4.28) 

 
where: 
Cr  Recompression index, [-]. 
σv Stress in soil, σv=σo+Δσav, [kN/m2]. 
σc Preconsolidation pressure, [kN/m2]. 
Δσav Average vertical stress increase in the clay, [kN/m2]. 
 
The term of recompression index and initial void ratio can be obtained by equating Eq. (4.28) 
to Eq. (4.27) directly under piles at z = 15 [m]. The average vertical stress increase at this 
depth may be approximated by distributing the raft pressure in the soil with a slope of 1:2.  
 
Term of recompression index and initial void ratio for the whole layer is given by: 
 

( ) 0045.0
 1

 =
e+ 

C

o

r                                                     (4.29) 

 
To carry out the analysis by the NPRD method, an average undrained cohesion of cu = 200 
[kN/m2] is considered. Russo (1998) suggested a limited shaft friction not less than 180 
[kN/m2] meeting undrained shear strength of 200 [kN/m2]. To carry out the analysis by the 
LPR method, a limit shaft friction of ql = 180 [kN/m2], which gives a limiting pile load of Ql 
= 3817 [kN] is assumed. Groundwater in typical London clay lies in within 1.0 [m] from the 
ground surface (Rickard et al. (1985)). The groundwater level is assumed to be lie directly 
below the raft. Dry unit weight of the clay is taken to be γs = 18.5 [kN/m3]. 

4.3.2.2 Pile material 

To take the weight of the piles in the analysis, the unit weight of the pile material is taken to 
be γb = 25 [kN/m3]. 

4.3.2.3 Analysis of the piled raft 

As piles are narrow to each other, pile-raft interaction may be neglected and the foundation is 
analyzed as freestanding raft. Comparisons are carried out to evaluate the present analysis. In 
which, settlements computed from methods used variable soil modulus and field 
measurements are compared with that obtained by the present analysis. Piles are subdivided 
into line elements; each is 3.75 [m] length. The effective depth of the soil layers under the raft 
is taken to be H = 100 [m] for all methods. In the analysis by NPRD, NPRH and LPR 
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methods, the total layer is subdivided into 10 sub-layers to take the variety of the soil modulus 
with depth. In the present analysis, the average vertical stress increase is determined in sub-
layers of the clay, each of 20 [m] thickness. 

4.3.2.4 Comparison with measured settlement  

To examine the present analysis for Stonebridge piled raft, the computed consolidation settlement 
is compared with the measured settlement in Table 4-1. The computed settlement was determined 
at the raft centroid. The table shows a small difference between computed and measured 
settlement.  
 

Table 4-1 Comparison between measured and computed settlements 
Item Measured settlement Computed settlement Difference 

Consolidation settlement Sc [cm] 1.8 2.1 +0.3  

4.3.2.5 Comparison with methods using variable soil modulus 

Figure 4-14 shows the consolidation settlement of piled raft obtained by the present analysis 
and those obtained by methods using variable soil modulus. Also, the figure includes the 
measured settlement.  
 
LPR gives the smallest settlements among the others. This was expected, because the settlement 
from nonlinear analysis is greater than that obtained from linear analysis. However, the contact 
pressures for the present analysis and LPR are the same where they are independent from soil 
properties but settlements of them are not the same. It can be noticed that the consolidation 
settlement of the present analysis has a good agreement not only with measured settlement but 
also with computed settlement of nonlinear analyses using variable soil modulus. 
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Figure 4-14 Comparison between measured and computed settlements (case study 1) 

4.3.3 Case study 2: Piled raft of Dashwood House 
Hong et al. (1999) applied a method for the analysis of large vertically loaded pile groups 
using load-transfer curves (NPRLT) on the piled raft of Dashwood. They compared the 
computed settlement with that of the field measurement reported by Hooper (1979). In this 
case study, the computed and measured settlements of this piled raft is used to verify the 
present analysis. 
 
Dashwood is a high building of 15-storey floors with a single storey basement located in 
north London, England. The building is 61 [m] high. The foundation of the Dashwood is a 
rectangular piled raft of area 43 [m] by 31.5 [m]. The building load including the raft weight 
is 274 [MN]. A total of 462 bored piles are located under the raft. All piles have a length of l 
= 15 [m] and a diameter of D = 0.485 [m]. Piles are arranged on a square grid of 1.5 [m] 
interval. Figure 4-15 shows the mesh of the raft with piles. The subsoil at the building 
location consists of 8 [m] of fill, sand and gravel, followed by London clay. The raft is 
founded on gravel about 1 [m] above the upper clay surface. In their analysis for simplicity, 
Hong et al. (1999) considered the raft resets on the London clay directly.   

4.3.3.1 Analysis of the piled raft 

Dashwood has the same conditions of Stonebridge in respect to the soil, statical system of the 
structure and piled raft. Considering the same properties of London clay presented in case 
study 1, the piled raft is analyzed by the present analysis and the selected previously methods. 
Piles are divided into line elements, each is 3.25 [m] length.  
 
 
 



Chapter 4 
 

 

 4-27 

 

33.0 [m]

 
Figure 4-15 Mesh of Dashwood raft with piles 

4.3.3.2 Comparison with measured settlement  

The consolidation settlement is compared with the measured settlement in Table 4-2. The table 
shows a small difference between computed and measured settlements.  
 

Table 4-2 Comparison between measured and computed settlements 
Item Measured settlement Computed settlement Difference 

Consolidation settlement Sc [cm] 3.3 2.9 -0.4  

4.3.3.3 Comparison with methods using variable soil modulus 

Figure 4-16 shows the consolidation settlement of piled raft obtained by the present analysis 
and those obtained by methods using variable soil modulus. Also, the figure includes the 
measured settlement and the computed settlement by the NPRLT method. From figure, the 
same conclusions, which presented in the case study 1, is achieved.  
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Figure 4-16 Comparison between measured and computed settlements (case study 2) 
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