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Preface

The purpose of this text is to present the methods, equations, procedures, and techniques used in
the formulation and development of the ELPLA function. It is of value to be familiar with this
information when using the software.

An understanding of these concepts will be of great benefit in applying the software, resolving
difficulties, and judging the acceptability of the results.

Two familiar types of subsoil models were considered, Winkler’s model and Continuum model.
In addition, the simple assumption model is also considered. The model assumes linear contact
pressure on the base of the foundation.

Finite elements-method was used to analyze both of the raft and grid foundations (or the ribbed
raft). In which plate bending elements represent the raft according to the two-dimensional nature
of foundation, while grid elements represent the grid.

The development of the finite element equations for plate elements and grid elements is well
documented in standard textbooks and consequently it is not duplicated in this User’s Guide.

August 2010

M. El Gendy
Port Said, Egypt
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Preface

Today, nearly every engineering office has its own computer programs for the analysis and design
of foundations. Furthermore, most of the available programs under Windows are user-friendly and
give very excellent output graphics with colors. Consequently, theoretically a secretary not an engi-
neer can use them. But the problem here is how to control the data and check the results. The pur-
pose of this book is to present the methods, equations, procedures and techniques used in the formu-
lation of the computer analysis of the foundations. These items are coded in the program ELPLA.
The book contains many practical problems which are analyzed in details by using the program
ELPLA. It is important for the engineer to be familiar with this information when carrying out com-
puter analysis of foundations. An understanding of these concepts will be of great benefit in carrying
out the computer analysis, resolving difficulties and judging the acceptability of the results. Three
familiar types of subsoil models (standard models) for foundation analyses are considered. The
models are Simple Assumption Model, Winkler’s Model and Continuum Model. In the analysis,
foundations are treated as flexible, elastic or rigid. In this book the Finite Element-Method was used
to analyze both of the raft and grid foundation (or the ribbed raft). In which plate bending elements
represent the raft according to the two-dimensional nature of foundation, while grid elements repre-
sent the grid. The development of the finite element equations for plate elements and grid elements
is well documented in standard textbooks and consequently it is not duplicated in this book.

August 2010

M. El Gendy
Port Said, Egypt
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1.1 Symbols used in chapter 1

i Node number
Field number
Jj Iteration cycle number

Ny Band width number of the matrix
N Sum of all vertical applied loads on the foundation [kN]

qi Contact pressure at node i [kKN/m?]

Xi Coordinate of node i from the centroidal axis x [m]
Vi Coordinate of node i from the centroidal axis y [m]
Ay Foundation area [m2]

M Moment due to N about the x-axis [kN.m]
M, Moment due to N about the y-axis [kN.m]

I Moment of inertia of the foundation about the x-axis [m*]
1, Moment of inertia of the foundation about the y-axis [m*]
Ly Product of inertia [m*]

ex Eccentricity measured from the centroidal axis x [m]

ey Eccentricity measured from the centroidal axis y [m]

ai Side of contact area around node i parallel to x axis [m]
bi Side of contact area around node i parallel to y axis [m]
Eb modulus of elasticity of the plate element [kN/m?]

Vb Poisson's ratio of the plate element [1]

d thickness of the plate element [m]

D Flexural rigidity of the plate element D =E» d*/(12(1- vs?))

Qi Contact force at node i [kN]

E{/  Modulus of compressibility of the layer 1 [kN/m?]

F Settlement coefficients f for the system of all layers until layer /, which have been
replaced by a material from layer /

fED Settlement coefficients f for the system of all layers until layer /-1, which have been
replaced by a material from layer /

Af  Difference of settlement coefficients f* - {1

Wi Displacement at node i [m]

Si Soil settlement at node i [m]

ksi Modulus of subgrade reaction at node i [kN/m?]

ki Spring stiffness (Modification of modulus of subgrade reaction by iteration) [kN/m]

Chi Flexibility coefficient of point k due to a unit load at point i [m/kN]

Wo Rigid body translation of the raft w, at the centroid [m]

Swi Settlement of point i due to load from 0 to ¢gv [m]
with modulus of compressibility Ws ( part of reloading )
SEi Settlement of point i due to load from ¢ to go [m]
with modulus of compressibility Es (part of primary loading )
qv Overburden pressure [kN/m?]
Hni Foundation level of raft i above the specified datum [m]
ti Foundation level of raft i from the ground surface [m]
Zil z-value of flexibility coefficient from the ground surface [m]
Ziki z-value of flexibility coefficient of raft (or node) i due to load from raft (or node) & [m]

Oxi Rotation of node i about the x direction [Rad]
Oyi Rotation of node i about the y direction [Rad]
€ Tolerance of accuracy [m]
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Oxo Rigid body rotation of the raf about the x-axis of geometry centroid [Rad]

Oyo Rigid body rotation of the raft about the y-axis of geometry centroid [Rad]

{F}  Vector of total external forces due to applied loads and the soil reactions

{N}  Vector of the resultant force N and moments M, and M

{P}  Vector of applied loads

{O}  Vector of soil reactions

{Ow} Vector of groundwater forces

{s}  Vector of nodal settlements

{sw} Vector of settlements due to reloading

{se}  Vector of settlements due to primary loading

{st}  Vector of displacement due to temperature difference

{Ore} Vector of contact pressures for loading part

{Ov} Vector of contact pressures for reloading part

{Ow} Vector of water pressure forces

[c] Flexibility matrix of the soil

[4s] Soil stiffness matrix

[k]  Plate stiffness matrix

[ks]  Grid stiffness matrix

[X] Vector of coordinates x and y

[ew]  Flexibility matrix which is determined by modulus W;s

[ce]  Flexibility matrix which is determined by modulus Ejs

[ks£] Soil stiffness matrix which is determined by modulus E

[ksw] Soil stiffness matrix which is determined by modulus Ws

{6}  Nodal displacements of the foundation, each nodal displacement has deflection w and
two rotations 0x and 0y about x and y axis, respectively

{A}  Vector of translation w, and rotations tan 8x, and tan 0y,

1.2 Introduction
This chapter describes the most common practical models used in the analysis of foundations.

Foundation is the base of the structure that transmits its loads to the soil. It must include often
considerable moments and forces. Although every structure is founded on soil, most of the
practical analyses of the structure and its foundation, do not take into account the influence of
the subsoil behavior below or around the foundation.

In times, when there no computers were available, simplified methods were used considering as
low as possible computation effort to receive the results with acceptable accuracy. In some
publications, such as that of Ohde (1942), extensive and refined calculation methods were
proposed and applied only for few cases in the practice.

The computers whose programming and memory possibilities are developed increasingly caused
a revolution of the calculation practice. Now the programming and extensive computation effort
can expand considerably to achieve the results as perfect as possible to the reality. These
methods are considered particularly for the analysis of mostly deformation sensitive large
structures.

By determination of contact pressures, internal forces and deformations of foundations,
distinguishing between the calculation methods used in the analysis of strip foundations and

1-3
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those of rafts is important. Where by strip foundations a linear or uniform distribution of contact
pressures in long direction may be assumed, while for rafts the contact pressures are examined in
both directions.

Strip foundations may be analyzed using classical subsoil models. Such as Winkler's model
according to Winkler (1867), Grafshoff (1978) and Wolfer (1978) and Continuum model
according to Ohde (1942), Grafhoff (1978) and Kany (1974). In addition, cases of small and
irregular foundations can be analyzed by fewer extensive methods using tables and charts.

For determination of internal forces and deformations of rafts, Finite differences-method or
Finite elements-method is applied. Deninger (1964) developed a computer program to determine
the contact pressures and deformation of rectangular rafts on elastic layer using the Finite
differences-method. The earliest application of the Finite elements-method for the investigation
of the soil foundation interaction was that of Cheung/ Zienkiewicz (1965). These authors
considered the analysis of rectangular plate resting on Winkler's medium and on isotropic elastic
half-space soil medium.

The subsoil models for analysis of foundations (standard models) can be divided into three main
groups:

- Simple assumption model,
- Winkler's model,
- Continuum model.

Simple assumption model does not consider the interaction between the foundation and the soil.
The model assumes a linear distribution of contact pressures beneath the foundation. Winkler's
model is the oldest and simplest one that considers the interaction between the foundation and
the soil. The model represents the soil as elastic springs. Continuum model is the complicated
one. The model considers also the interaction between the foundation and soil. It represents the
soil as a layered continuum medium or isotropic elastic half-space soil medium.

Although Continuum model provides a better physical representation of the supporting soil, it
has remained unfamiliar, because of its mathematical difficulties where an application of this
model requires extensive calculations. Practical application for this model is only possible if a
computer program or appropriate tables or charts are available. For this aim Waolfer (1978),
Grafshoff (1978), Kany (1974), Sherifl Konig (1975), Hahn (1971) and El Kadi (1968) presented
series of tables and charts that can be used for determining contact pressures, moments, shear
forces and deflections, but using these tables and charts are limited to certain problems.

For this purpose, a general computerized mathematical solution based on Finite elements-
method was developed to represent an analysis for foundations on the real subsoil model. The
solution can analyze foundations of any shape considering holes within the foundation and the
interaction of external foundations. This mathematical solution is coded in the program ELPLA
(2001).

The developed computer program ELPLA also can analyze different types of subsoil models,
especially the three dimensional Continuum model that considers any number of irregular layers.
Additionally, the program can be used to represent the effect of structural rigidity on the
foundation-soil system and the influence of temperature change on the foundation.
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In this book, the three standard soil models are described through nine different numerical
calculation methods. The methods graduated from the simplest one to more complicated one
covering the analysis of most common foundation problems that may be found in the practice.

1.3 Description of the numerical calculation methods
According to the three standard soil models (simple assumption model - Winkler's model -
Continuum model), nine numerical calculation methods are considered to analyze the raft as

shown in Figure 1.1 and Table 1.1.

Table 1.1 Numerical calculation methods

Method No. | Method

1 Linear contact pressure
(Simple assumption model)

2 Constant modulus of subgrade reaction
(Winkler's model)
3 Variable modulus of subgrade reaction
(Winkler's model)
4 Modification of modulus of subgrade reaction by iteration

(Winkle's model/ Continuum model)

5 Modulus of compressibility method for elastic raft on half-space soil
medium (Isotopic elastic half-space soil medium-Continuum model)

6 Modulus of compressibility method for elastic raft on layered soil medium
(Solving system of linear equations by iteration)
(Layered soil medium-Continuum model)

7 Modulus of compressibility method for elastic raft on layered soil medium
(Solving system of linear equations by elimination)
(Layered soil medium-Continuum model)

8 Modulus of compressibility method for rigid raft on layered soil medium
(Layered soil medium-Continuum model)

9 Modulus of compressibility method for flexible foundation on layered soil
medium
(Layered soil medium-Continuum model)
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Today, The Finite elements method is the most powerful procedure available in many complex
problems. It can be applied to nearly all engineering problems, especially in structure analysis
problems. In this book, the Finite elements-method is used to analyze the raft for all numerical
calculation methods except Modulus of compressibility method for rigid raft on layered soil
medium (method (8)), which does not obey the elasticity rules. In the Finite elements-analysis,
the raft is represented by rectangular plate bending elements according to the two dimensional
nature of foundation. Grid elements are selected to represent the presence of ribs in the ribbed
raft or grid foundations. Each node of plate or grid elements has three degrees of freedom,
vertical displacement w and two rotations 0x and 0, about x- and y-axis, respectively. The
development of the finite element equations is well documented in standard textbooks.
Consequently, it is not duplicated in this book. The reader can see as an example that of
Zienkiewicz/ Cheung (1970) or Schwarz (1984) for further information on the development of
finite element equations.

To formulate the equations of the numerical calculation methods both the raft and the contact
area of the supporting medium are divided into rectangular elements as shown in Figure 1.2.
Compatibility between the raft and the soil medium in vertical direction is considered for all
methods except Linear contact pressure method (method 1).

The fundamental formulation of equilibrium equation for the raft can be described in general
form through the following Equation 1.1:

[k, ] o} ={F) (1.1)
#
where the vector of forces {F} contains the action and reaction forces acting on the raft. In
principle for all calculation methods, the action forces are known and equal to the applied forces
on the raft while the reaction forces (contact forces) are required to be found according to each
soil model.

It is assumed that the contact pressure qi can be replaced by equivalent force Q: at the various
nodal points. The contact pressure around the node i is given by ¢i = Qi/(aixbi) over an
appropriate area a;xb; corresponding to the nodal contact i. It should be noticed that the contact
area contributing to the nodal reactive force is variable from a node to another according to its
location. Figure 1.2 shows some examples for the different nodal areas (nodes 34, 36, 38, 39 and
61).

According to subsoil models (Simple assumption model - Winkler's model - Continuum model),
eight numerical calculation methods are considered to find the contact pressures ¢i, and hence to
analyze the raft. The next pages describe the interaction between the raft and subsoil medium in
these methods.
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Plate element

Soil element

Figure 1.2 Nodal action between raft and soil
a) Raft foundation
b) Nodal action on soil

1.3.1 Linear contact pressure (method 1)
(Simple assumption model)

This method is the simplest one for determination of the contact pressure distribution under
foundations. The assumption of this method is that there is no compatibility between the
foundation deflection and the soil settlement. In the method, it is assumed that the contact
pressures are distributed linearly on the bottom of the foundations (statically determined) as
shown in Figure 1.3. In which the resultant of soil reactions coincides with the resultant of
applied loads.
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Lineare contact pressure
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Figure 1.3 Contact pressure distribution for Simple assumption model

a) Section parallel to x-direction
b) Section parallel to y-direction
C) Foundation plan

In the general case of a foundation with an arbitrary unsymmetrical shape and loading, based on
Navier’s solution the contact pressure g: at any point (xi, y;) from the geometry centroid on the
bottom of the foundation is given by:

N M LM, MM, )
q,= =X+ - =y, [kN/m’] (1.2)
a4, 1) L1k

For a foundation of rectangular shape, there are two axes of symmetry and 1.y = 0. Therefore, the
contact pressure ¢g; of Equation 1.2 reduces to:

N M, M
=t —=x. +—=y, 1.3
g, 4 Vi (1.3)

while for a foundation without moments or without eccentricity about both axes the contact
pressure g: will be uniform under the foundation and is given by:

- 1.4
q; 4 (1.4)

System of equations of Linear contact pressure method
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The foundation can be analyzed by working out the soil reactions at the different nodal points of
the Finite elements-mesh. This is done by obtaining the contact pressure ¢; from Equation 1.2.
Then, the contact force Q; at node i is given by:

0 =q;ab, (1.5)

Considering the entire foundation, the foundation will deflect under the action of the total
external forces {F} due to known applied loads {P} and the known soil reactions {Q}, where:

wi={P}-10j (1.6)
The equilibrium of the system is expressed by the following matrix equation:

[, ] 6} = {P}-t0} (1.7)
Equation solver of Linear contact pressure method
As the plate stiffness matrix [kp] in Equation 1.7 is a diagonal matrix, the system of linear

equations 1.7 is solved by Banded coefficients-technique. The unknown variables are the nodal
displacements w; and the nodal rotations 0x and 6,: about the x- and y-directions.

1.3.2 Modulus of subgrade reaction (methods 2 and 3)
(Winkler's model)

The oldest method for the analysis of foundation on elastic medium is the modulus of subgrade
reaction, which was proposed by Winkler (1867). The assumption of this method is that the soil
model is represented by elastic springs as shown in Figure 1.4. The settlement s; of the soil
medium at any point i on the surface is directly proportional to the contact pressure ¢; at that
point and is mathematically expressed as:

q; :ksi S; (1.8)

The ratio between the contact pressure ¢; [kN/m?] and the corresponding settlement s; [m] is
termed the modulus of subgrade reaction ki [kN/m?].

1-10
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Figure 1.4 Winkler’s model
System of equations of Modulus of subgrade reaction
For a node i on the Finite elements-mesh, the contact force Q: is given by:

Q. =ab ks, (1.9)

si Vi

It should be noticed that £si is the modulus of subgrade reaction at the node i. It may be constant
for the entire foundation (Constant modulus of subgrade reaction - method 1) or variable from a
node to another (Variable modulus of subgrade reaction - method 2).

Considering the entire foundation, Equation 1.9 can be rewritten in matrix form as:

{0} =[k]is} (1.10)

Complete stiffness formulation of Modulus of subgrade reaction

The foundation will deflect under the action of the total external forces {F} due to known
applied loads {P} and the unknown soil reactions {Q}, where:

{F}={P}-10} (1.11)
1-11
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The equilibrium of the raft-soil system is expressed by the following matrix equation:
[k, ] {8} = {P}- {0} (1.12)
Considering the compatibility of deformation between the plate and the soil medium, where the

soil settlement s; equal to the plate deflection wi, Equation 1.10 for Winkler’s model can be
substituted into Equation 1.12 as:

[k, J+ .11 )

Equation 1.13 shows that the stiffness matrix of the whole raft-soil system is the sum of the plate
and the soil stiffness matrices, [kp]+[4s].

{P} (1.13)

Equation solver of Modulus of subgrade reaction

It should be noticed that the soil stiffness matrix [£s] is a purely diagonal matrix for Winkler’s
model (methods 2 and 3). Therefore, the total stiffness matrix for the plate and the soil is a
banded matrix. Then, the system of linear Equations 1.13 is solved by Banded coefficients-
technique. Since the total stiffness matrix is a banded matrix, the Equation solver 1.12 takes
short computation time by applying these methods (2) and (3).

The unknown variables in Equation 1.13 are the nodal displacements w;: (w: =s;) and the nodal
rotations Ox; and 6); about the x- and y-directions. After solving the system of linear equation
1.13, substituting the obtained settlements s; in Equation 1.10, gives the unknown contact forces

O

1.3.3 Modification of modulus of subgrade reaction by iteration (method 4)
(Winkler’s model/ Continuum model)

This method was proposed by Ahrens/ Winselmann (1984), which based on the soil is
represented by variable moduli of subgrade reactions simulate to the Continuum model. In the
method the raft and soil medium are treated separately, the results of one analysis forming the
boundary conditions for the subsequent analysis as part of an iterative process. By modifying the
variable moduli through the iterative process, the compatibility between the soil and raft
interface is reached. The obtained results here are similar to those by Continuum model. The
method is not only used for analysis the foundations by Continuum model but also by modulus
of subgrade reaction with variable moduli. The first iterative cycle gives an analysis for modulus
of subgrade reaction with variable moduli. The results at any intermediate iteration cycle may be
considered as acceptable results, which in fact lie between Winkler’s model with variable moduli
and Continuum model.

The iteration process of this method can be described as follows:

1) First, uniform distribution of contact pressure ¢ on the bottom of the foundation is
assumed as:

1-12
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¢ =2 (1.14)

4,
1) For a set of grid points of Finite elements-mesh, the soil settlement s; at point i due to

contact forces in manner described later for Continuum model is obtained from:
st =2, O (1.15)
i=1
1) The spring stiffness ki from the soil settlement si and contact force Q: is computed from:

)
@ _ O
K =2 (1.16)

1

1v) The foundation is analyzed as plate on springs, the spring coefficients are used to
generate the soil stiffness matrix [As]. This matrix will be a diagonal matrix. Therefore,
adding the soil stiffness matrix [ks] to the plate stiffness matrix [kp] is easy. Then, the
overall matrix for raft-soil system becomes a banded matrix. The entire system equation
1s expressed as

[k, J+[x.1] {5} = (P} (1.17)

V) A set of nodal displacements {3} is obtained by solving the system equation (1.17) using
the Banded coefficients-technique.

vi) The soil settlements si are compared with the corresponding plate deflections wi, which
were computed from the system equation (1.17).

g=s, —w] (1.18)

iv) If the accuracy does not reach to a specified tolerance € a new set of contact forces are
obtained using:

Ql'(jH) :k,'(j) Wi(j) (119)

The steps ii to vii are repeated until the accuracy reach to a specified tolerance €, which means
that sufficient compatibility between the plate deflections w: and the soil settlements s; are
reached in the plate-soil interface. Figure 1.5 shows the iteration cycle of the iteration process.

A good advantage of this method is that, it can easily eliminate the contact pressure if negative
pressure appeared or consider nonlinear soil response. By analysis both the raft and subsoil
separately, some former restrictions on maximum problem size can be avoided. Particularly, the
soil flexibility matrix no longer needs to be inverted as followed by classical analysis of
Continuum model. Generally, computing and storing the soil flexibility matrix is necessary only
once, at the beginning of the analysis. During the second and subsequent iteration cycles, soil
settlements can be determined by multiplying the flexibility matrix by the vector of modified
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contact forces. Consequently, the maximum permissible number of nodes is greatly increased. It
needs also less computation time than that of the elimination method used in the analysis of

Continuum model.
W_W Uniform contact

q'? = N/A;

Soil settlement

s =Y cik Q1Y

System with springs
springs

A Y
TS ST Plate deflection w
m- [[kp] + [As]] {8} = {P}
New contact forces

Ql.(jﬂ) = D w0 v

Compare s with w
€= lsi - wil

ST Si(/

No

< Convergence reached
Wi(j) ~ Si(j)

A

J = Iterative cycle No.

i = Node Y

e
( Iteration end )

Figure 1.5 Iteration cycle of the iteration process
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1.3.4 Modulus of compressibility method for elastic
raft on half-space soil medium (method 5)
(Isotropic elastic half-space soil medium - Continuum model)

Continuum model was first proposed by Ohde (1942), which based on the settlement will occur
not only under the loaded area but also outside (Figure 1.6). Otherwise, the settlement at any
nodal point is affected by the forces at all the other nodal points.

qi
EEEERER] kK
S--i Sk, i 7

R4

Influence line of elastic displacement

Figure 1.6 Continuum model

Continuum model assumes continuum behavior of the soil, where the soil is represented as
isotropic elastic half-space medium or layered medium. Consequently, this model overcomes the
assumption of Winkler’s model, which does not take into account the interaction between the
different points of the soil medium. Representation of soil as a continuum medium is more
accurate as it realized the interaction among the different points of the continuum medium.
However, it needs mathematical analysis that is more complex. The earliest application for rafts
on continuum medium using Finite elements-method related to Cheung/ Zienkiewicz (1965).
These authors considered the soil as isotropic elastic half-space medium.

The isotropic elastic half-space soil medium based on Boussinesq's solution (1885). The medium
in this solution is semi-infinite homogeneous isotropic linear elastic solid subjected to a
concentrated force. The force acts normal to the plane boundary at the surface. This basic
solution can be used to obtain the surface settlement of isotropic elastic half-space soil medium
subjected to a concentrated load acting on the ground surface.

Modulus of compressibility method for elastic raft on half-space soil medium (method 5), which

is described here, considers the interaction between the raft and soil. It represents the soil as
isotropic elastic half-space medium (Figure 1.7).
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Figure 1.7 Contact pressure distribution and soil settlement
under elastic raft on Continuum medium

a) Section parallel to x-direction
b) Section parallel to y-direction
c) Foundation plan

Settlement at a depth z due to a concentrated load

Figure 1.8 shows a concentrated load Q acting on the surface of isotropic elastic half-space
medium. The settlement s(z) at a depth z due to this load can be expressed as:

(-2 ((l+vs)zz N 2(1—\;52)} (1.20)

_27'CES (rz +Zz)3/2 (r2+22)1/2
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z

Figure 1.8 Settlement s(z) due to a concentrated load on elastic half-space medium

Settlement at the surface due to a concentrated load

The settlement s(0) at the surface outside the point of application of the concentrated load is
obtained by putting z = 0 in Equation 1.20:

s(0)=% (121)

Settlement at the surface under the concentrated load

Equation 1.21 cannot be directly applied to determine the settlement under the concentrated
load. Therefore, the concentrated load is converted to an equivalent uniform load over a
rectangular area axb. Then, the settlement 5(0) at the center of the uniformly loaded rectangular

area axb can be obtained by integrating Equation 1.21 over that area as shown in Figure 1.9 and
Equation 1.22.

s =202V, [ v dbdn (1.22)

nE ab =0 [(Cz n nz)

Equation 1.22 after integration becomes:

s(0)=220-v, )[lh{h §+1]+11{2+1@+1D (1.23)
nE, a |b \b b |a Va
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Figure 1.9 Settlement due to loaded area axb on elastic half-space medium

Formulation of flexibility matrix of soil as elastic half-space soil medium
Determination of the settlement S;;

The settlement s:; of node 1, due to contact force Qi on that node for isotropic elastic half-space
soil medium can be expressed by:

2 2 2
s =22 0=V Ly e, /Y b, ’iz+1 (1.24)
nkE, a; i b, i a; a;
Equation 1.24 is simplified to:
81 =C: O (1.25)

The ratio between the settlement si; of point 1 and the contact force Q: at that point is termed the
flexibility coefficient ci; [m/kN]. It can be recognized as the settlement of a point i due to a unit
load at that point.

Determination of the settlement Sk

The settlement six of node 7, due to contact force O« on node k for isotropic elastic half-space
soil medium, Figure 1.10, can be expressed by:

1_ 2
Sl- . — Qk ( VS ) =Ci . Qk (1,26)
ﬂ TCES ri,k j

The ratio between the settlement six of point i and the contact force O at a point £ is termed the
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flexibility coefficient cii [m/kN]. It can be recognized as the settlement of a point i due to a unit
load at a point £.

Figure 1.10  Settlement six of node i due to contact force Ok at node &

Assembling of the flexibility matrix for isotropic elastic half-space soil medium

To find the settlement s; at node i, Equation 1.25 is applied for that node i, while Equation 1.26
is applied for the other remaining nodes considering contact forces over nodes. For a set of grid
points of Finite elements-mesh, the settlement at point i is obtained from:

S, =8, +S .8, 5+,

i,n

(1.27)
=Ciy @) +¢, 0, +¢ 5 0, +...t+¢, 0,
Equation 1.27 in series form is:
§; = zci,k Qk (1.28)
k=1
Equation 1.28 for the entire foundation in matrix form is:
Sy _cl,l Co C3 e Gy, ] @)
Sy G G C3 e Gy | 1O,
S3 G Gy G e Gy, | Oy
= (1.29)
Sn _Cn,l Cn,Z cn,3 Cn n_| Qn
Equation 1.29 is simplified to:
{st=[clio} (1.30)
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To assemble the flexibility matrix of the soil [c], each node is loaded by a unit contact force and
the resulting settlements in all remaining nodes and in the loaded node are calculated. Inverting
the flexibility matrix [c], gives the [nxn] stiffness matrix of the soil [ks] corresponding to the
contact forces at the n nodal points such that:

10} =k, s} (131)

Complete stiffness formulation for isotropic elastic half-space soil medium

The foundation will deflect under the action of the total external forces {F} due to known
applied loads {P} and the unknown soil reactions {Q}, where:

{Fi=1{P}-{0} (132)

The equilibrium of the raft-soil system is expressed by the following matrix equation:
[,] 6}={P}-{0} (1.33)

Considering the compatibility of deformation between the plate and the soil medium, where the
soil settlement s; equal to the platle deflection wi, Equation 1.30 for Continuum model can be
substituted into Equation 1.32 as:

[k, J+[x.1] {8} = (P} (134)

Equation 1.34 shows that the stiffness matrix of the whole raft-soil system is the sum of the plate
and the soil stiffness matrices, [kp]+[4s].

It should be noticed that the matrix [ks] is not compatible with the matrix [kp], because the
degrees of freedom in Equation 1.31 differ from that in Equation 1.33. To overcome this
problem, Equation 1.31 can be treated by extending the row and column of matrix [ks] in the
same manner as the matrix [kp]. Consequently, the operation of matrix equations can then be
accepted.

Equation solver for isotropic elastic half-space soil medium

It should be noticed that the matrix [£s] is full symmetrical matrix for isotropic elastic half-space
soil medium. Therefore, the total stiffness matrix for the raft and the soil is also full symmetrical
matrix.

The system of linear equations is solved by Gauss elimination-technique. Since the total stiffness
matrix is a full matrix, the equation solver (1.34) takes long computation time by applying this
method. The unknown variables in Equation 1.34 are the nodal displacements w: (w: = si) and the
nodal rotations 6. and 6,: about the x- and y-directions. After solving the system of linear
Equation 1.34, substituting the obtained settlements si in Equation 1.31, gives the unknown
contact forces Q..
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1.3.5 Modulus of compressibility method for elastic
raft on layered soil medium (method 6)
(Solving system of linear equations by iteration)
(Layered soil medium-Continuum model)

Introduction

Available solutions for the analysis of foundations using Continuum model either representing
the soil as isotropic elastic half-space soil medium or Layered soil medium were presented by
many authors. But, the major difficulty for practical problems to apply this model lies in solving
large set of equations, which requires large computer storage and long computation time.

A number of attempts has been made to overcome this problem, among these are:

Haung (1974) proposed a method for analyzing a symmetrically loaded foundation by taking
into account the condition of symmetry. Consequently, the simultaneous equations can be
reduced by considering only a part of the foundation rather than the whole foundation. The
analysis is carried out for quarter of the foundation if the raft and soil are symmetrical about
both x and y axes, or for half of the foundation if the raft and soil symmetrical about x-axis or y-
axis. Nevertheless, most of the foundations in practice are not symmetrically loaded.

Haung (1974) proposed an iterative scheme to convert the overall stiffness matrix into a half
band matrix by adding a part of the soil stiffness matrix to the plate stiffness matrix. Then,
simultaneous equations can be solved by iteration method. Nevertheless, it was found that when
the number of equations is large while the bandwidth is small, the displacements may not
converge, and large bandwidth should be used.

Cheung (1978) proposed a method to modify the overall stiffness matrix into a banded diagonal
matrix which can be solved by using Banded coefficients-technique. Modification of this matrix
based on the assumption that the deflection at a point is affected only by forces acting on
surrounding points. Nevertheless, it is found that this foundation model is less accurate.

Ahrens/ Winselmann (1984) and Stark/ Majer (1988) proposed an iteration method for the
Continuum model using variable moduli of subgrade reactions. The iteration process is repeated
until compatibility between the plate deformations due to the moduli of subgrade reactions and
the soil settlements due to the corresponding contact pressures are reached. EI Gendy (1994)
showed that the number of iterative cycles required for this method increase with increasing the
number of elements and the iteration may not converge for grate number of elements.

Lopes/ Gusmdo (1991) suggested that in many cases, the foundation subjects to symmetrical
vertical loading. Therefore, the effects of some of the load components, such as moments, may
be ignored and only the vertical reactions may be considered. In such cases, the size of vectors
and matrices are considerably reduced.

El Gendy (1994) proposed an iterative scheme to convert the overall stiffness matrix into a
banded matrix by converting the soil stiffness matrix to a diagonal matrix. Then, the
simultaneous equations can be solved by Banded coefficients-technique. EI Gendy (1998)
modified the same iteration scheme by converting the soil stiffness matrix into equivalent
symmetrical banded matrix. A comparison of this method with other available iteration methods
shows that it converges more rapidly. The iteration method of E/ Gendy (1998) is considered in
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the program ELPLA up Version 7.0, which is described in the next pages.

Description of method

To describe the proposed iteration method, consider a raft resting on a layered soil medium or
isotropic elastic half-space soil medium. The contact pressure ¢ at node i under the raft is

replaced by equivalent contact force Q.

For a set of grid points of Finite elements-mesh, the soil settlement s: at point i due to contact
forces in manner described earlier for Continuum model is obtained from:

5= ¢4 O (1.35)
k=1

Considering the entire foundation, Equation 1.34 can be rewritten in matrix form as:

{st=[clio} (1.36)

Inverting the flexibility matrix [c], gives the stiffness matrix of the soil [£s] corresponding to the
contact forces at the n nodal points such that:

{0} =1k, ]1s} (1.37)

Complete stiffness formulation

The foundation will deflect under the action of the total external forces {F} due to known
applied loads {P} and the unknown soil reactions {Q}, where:

{F}=1{P}-10} (1.38)

The equilibrium of the raft-soil system is expressed by the following matrix equation:

[k,] {8}=1{P)-{0} (1.39)

Considering the compatibility of deformation between the plate and the soil medium, where the
soil settlement s: equal to the plate deflection wi, Equation 1.37 for Continuum model can be
substituted into Equation 1.39 as:

[k, ]+ [k.]] 8} = {P} (1.40)

It should be noticed that the plate stiffness matrix [k] is a banded matrix and the soil stiffness
matrix [4s] is a full unsymmetrical matrix for layered soil medium and a full symmetrical matrix
isotropic elastic half-space soil medium. The major difficulty for practical problems lies in
solving large set of equations, which requires large computer storage and long computation time.
In order to overcome this problem, it is possible to convert the soil stiffness matrix [ks] to a
symmetrical banded matrix [£'] of half bandwidth equal to that of the plate stiffness matrix [4p].
Then, it can be easily added the matrix [£'] to the matrix [ky]. The resultant matrix will be also
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banded matrix. Consequently, Equation 1.40 can be solved by using the Banded coefficients-
technique.

Banded matrix formulation

To illustrate how to convert the soil stiffness matrix [ks] to a symmetrical banded matrix,
consider the simple example of the foundation shown in Figure 1.11. The foundation has 9
nodes, each node has three unknown deformations w, 0x and 0,. There are 27 simultaneous
equations. The foundation of 9 nodes yields to a plate stiffness matrix [kp] with a half bandwidth
Nw = 15

--»- 7 8 9
b

J 4 S 6
b

1 2 3

T a T a T

Figure 1.11  Foundation of 9 nodes

The matrix [£s] can be divided into two matrices [k1] and [k2] as follows:
[k, 1=k ]+ [, ] (1.41)

Equation 1.41 can be rewritten with matrix coefficients in details as:
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where the matrix [ki1] is a symmetrical banded matrix has the same half bandwidth of matrix [4p]
and the second matrix [k2] can be converted to a diagonal matrix as described in the iteration
process.

Iteration process
The iteration process of the method can be described as follows:

1) First, uniform distribution of contact pressure ¢'” on the bottom of the foundation is
assumed as:

o (1.43)

A./ i

i1) The soil settlements s; due to contact forces Q: in manner described either earlier for

isotropic elastic half-space soil medium or later for layered soil medium are obtained
from:

ist=[c]io} (1.44)

ii1)) A set of nodal forces {Qu} are computed from the matrix [k2] and the soil settlements
{s} as:

10, =1k, ]1s} (1.45)

iv) The matrix [A2] is converted to equivalent diagonal matrix [£*2]. The coefficients of the
diagonal matrix are obtained from:

k.; o (1.46)
Si
V) The equivalent symmetrical banded matrix [£'] for the soil stiffness matrix [4s] is:
[k]= [k ]+ [ ] (1.47)

vi) Now, adding the equivalent soil stiffness matrix [£'] to the plate stiffness matrix [kp] is
easy. Then, the overall matrix becomes a banded matrix. The entire system equation is
expressed as:

[k, ]+ [&1] {6} = () (1.48)

vii)) A set of nodal displacements {3} is obtained by solving the system equation 1.48 using
the Banded coefficients-technique.

viii))  The soil settlements s; are compared with the corresponding plate deflections wi, which
were computed from the system equation 1.48.
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g=s, —w] (1.49)

ix) If the accuracy does not reach to a specified tolerance € a new set of contact forces are
obtained using:

{0.1=[k]{s} (1.50)

The steps ii to viii are repeated until the accuracy reach to a specified tolerance &, which means
that sufficient compatibility between the plate deflections wi and the soil settlements s; are
reached in the plate-soil interface. Figure 1.12 shows the flow chart of the iteration process.

A good advantage of this iteration method is that it requires much less computer memory than
the elimination method. It needs also less computation time than that of the elimination method
used in the analysis of Continuum model. Much fewer cycles are needed to obtain a satisfactory
accuracy, nearly two or three cycles. Consequently, the maximum permissible number of nodes
is greatly increased. It can easily eliminate the contact pressure if negative pressure appeared or
consider nonlinear soil response. By analysis both the raft and subsoil separately, some former
restrictions on maximum problem size can be avoided.
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Compute the avarage contact pressurg

\4

Find the matrices [£1]
and [k2]

\4

Y

\4

Find the soil settlement
{s} =[c] 10}

\4

Compute a set of nodal forces

{04} = [k2] {s}

\4

Convert the matrix [k2] to diagonal matrix [£"2]

\4

Find the equivalent symmetrical banded matrix
[k]=[ki] + [k™2]

Find the plate deflection w from FE-plate analysis
analysis

Convergence reached Ye
( Wi(j) ~ Si(j) ] @

Y No
Find the new contact pressure

{0} = [k] {w}

A

Figure 1.12  Flow chart of the iteration process
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1.3.6 Modulus of compressibility method for elastic
raft on layered soil medium (method 7)
(Solving system of linear equations by elimination)
(Layered soil medium - Continuum model)

In reality, the soil profile is usually nonhomogeneous. The most likely profile is layered. In
addition, foundations are almost never placed at the ground surface. Therefore, an improvement
needs to be applied to half-space soil medium concerning the assumption that the load is applied
at the surface of homogeneous isotropic elastic half-space medium. Representing the soil as
layered continuum medium is more complicated than that as isotropic elastic half-space soil
medium. Kany (1954) presented an extension of Ohde’s method (1942) to strip footing resting
on nonhomogeneous and anisotropic medium. It can be applied for rafts as described in the
following section.

Settlement at a depth z due to a loaded area

The settlement at the corner of a loaded area can be determined in a manner similar to that at the
center of a loaded area, which was described in section 1.3.5. Thus, by integration of equation
1.20 over a loaded area. Figure 1.13 shows ¢ of size a loaded area axb acting on the surface of
isotropic elastic half-space medium.

Figure 1.13  Settlement s(z) under the corner of a loaded area on elastic half-space medium

According to Steinbrenner (1934), the settlement s(z) at a depth z under the corner of the loaded
area is given by:
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2
s(z)= gd=v.) b1n (ct+a) +a ln—(C+b)
2nE, (c—a) (c—=D)
, (1.51)
_q(l_vs_zvs )(Ztan—la_b]
2nE, zc

Settlement at the surface due to a loaded area

The settlement s(0) of a point at the surface under the corner of a rectangular loaded area is
obtained by putting z = 0 in Equation 1.51:

s(O):‘I(l_vsz) pin "D | g1 1D (1.52)
2nE (m—a) (m—D) '

N

Where in Equations (1.50) and (1.51)is c=+a’ +b*+z° und m=+a’+b’

Settlement of a finite layer due to a loaded area

For the settlement Equations 1.51 and 1.52 presented above, it was assumed that the soil layer
extends to an infinite depth. However, if a rigid base at a depth z=h underlies the soil layer, the
settlement s, of the layer can be approximately calculated as (Figure 1.14):

s, =5(0)—s(2) (1.53)

Subtracting Equation 1.51 from Equation 1.52 yields:

) :q(1—vf)(bln(c—a)(m+a)+aln(c—b)(m+b)J

h
2nE ct+a)(m—a c+b)(m->b
; ( )(2 ) (c+b)(m—D) (1.54)
_q(l_vs_zvs )(ztan—la_b)
2nE, zc
Equation 1.54 can be simplified to:
SthiSf (1.55)
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Figure 1.14  a) Isotropic elastic half-space soil medium
b) Elastic layer on rigid base

Settlement of multi-layers due to a loaded area

Obviously, it can generalize this approach to consider multi-layers of soil. Each has different
elastic material and thickness as shown in Figure 1.15. The vertical settlement of a layer / in an n

layered system is given by:
B f(l) _ f(/—l) B A f(/)
S, —CI( E([) =q E([) (156)

N N

The total settlement for n layered system is:

B f(l) n Af(/)
S—Q(Eq(l) +;W (157)

Considering the Poisson’s ratio vs for all soil layers is constant as its value for most soil types
ranges between 0.3 and 0.5.
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Figure 1.15  Layered system

Settlement at an interior point of loaded area

So far it has considered the settlement beneath a corner of a loaded area. To find the settlement
at any other point the principle of superposition can be used. The settlement at an interior point
of the rectangular loaded area is given by the sum of the settlements at the corners of four sub-
loaded areas. To determine the settlement coefficient £ for a layer / at an interior point i of the
rectangular loaded area shown in Figure 1.16, the Formula of Kany (1974) can be applied as:

f(l) :f(l)l +f(l)2 +f(l)3 +f(l)4

_ 1 = 2 (c,—a,)(M +a,)
_271:,,Z=:‘{(1 2 ){bﬂ ln(cn+an)(M—an) (1.58)

(c,=b,)(M+Db,)
(¢, +b,)(M=D,)

Where in Equation 1.58 is ¢, =+/a,” +b,” +z° und M =.la’+b’

The value z; means the level of the lower side of the layer /, from the foundation level.

aa,b
+a, In +(1-v, —2v.%) z tan ' =22
‘ ‘ z,c

n
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Figure 1.16  Superposition of four loaded areas to find the settlement at an interior point i

Settlement at a point outside the loaded area

Adding and subtracting corner settlements for four loaded areas can obtain the settlement of any
point outside the loaded area as shown in Figure 1.17. First, the settlement s as if the entire
region defined by load ¢ is determined. Then, the settlements due to the two edge loaded areas s2
and s3 are subtracted. Finally, the settlement s4 is added since it has been subtracted twice in 52
and s3. Using the same process, the settlement coefficient /& for a layer / at an exterior point i of
the rectangular loaded area shown in Figure 1.17 is given by:

FO = O Oy Oy g0, (1.59)
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Figure 1.17  Superposition of four loaded areas to find the settlement at an exterior point i

For any point i of coordinates ((, 1) lies inside or outside the loaded area axb, Figure 1.18, the
settlement coefficient 7 can be obtained according to Poulos/ Davis (1974) using the principle
of superposition by the following general Equation 1.60:

[ =fCn-fEG-an-fEn-b)+ f(C-an-b) (1.60)
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a) Point i lies inside the loaded area

b) Point i lies outside the loaded area

¢) Point i lies outside the loaded area

z\

Figure 1.19  Superposition of four loaded areas to find the settlement at any point i
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Formulation of the flexibility matrix for layered soil medium
Determination of the settlement S

Because the formula of Steinbrenner (1934) is valid for surface loadings, where the plate
element is supposed to be rigid with respect to the subsoil, compatibility between plate
displacement and surface settlement is required. Grafshoff (1955) defined the ACharacteristic
point” to be that point of a surface area loaded by a uniformly distributed pressure, where the
settlement due to that pressure is identical with the displacement of a rigid foundation of similar
dimensions and loading. For a rectangular element axb, the characteristic point takes the
coordinates ac =0.87a and b =0.87b as shown in Figure 1.19.

a
|
|
!
bc=10.87 !
Characteristic i b
i
| N
0.13b !
|
.
ac=0.87 a 0.13 a

Settlement due to flexible Displacement due to rigid element

Figure 1.19  Characteristic point of the settlement
Considering the settlement under the characteristic point for the loaded area a:*bi around a node

i, the settlement s:; of a node i, due to contact force Q: on that node for layered soil medium can
be expressed as:

B Qi f(l) n Af(/) B
0=y | F0 T 0 = (1.61)

The ratio between the settlement s;; of a point i and the contact force Q; at that point is termed
the flexibility coefficient ci; [m/kN]. It can be recognized as the settlement of a point i due to a
unit load at that point.
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Determination of the settlement S;x

For a loaded area axxbr around node &, Figure 1.20, the settlement six of a node 7, due to contact
force Ok on node £ for layered soil medium can be expressed as:

Sik = O [f(l) +Zn:Af(l) J =Ciy O, (1.62)

M )
ak bk Es =2 ES

The ratio between the settlement si,k of a point i and the contact force O at a point k is termed
the flexibility coefficient ci; [m/kN]. It can be recognized as the settlement of a point i due to a
unit load at a point k.

Figure 1.20  Settlement six of a node i due to contact force Ok = g« ak bx at node k

It can be noticed that the flexibility coefficients for isotropic elastic half-space medium may be
obtained by applying the layered soil medium. In this case, the soil layer must extend to a depth
that can be considered as an infinite depth (for example z = 10'° [m]). In the program ELPLA,
layered soil medium is available in methods (4), (6), (7), (8) and (9) while isotropic elastic half-
space medium is available only in method (5).

Assembling of the flexibility matrix for layered soil medium
To find the settlement s; at a node i, Equation 1.61 is applied for that node i, while Equation 1.62
is applied for the other remaining nodes considering contact forces over nodes. For a set of grid

points of Finite elements-mesh, the settlement at a point i is obtained from:

S; =S8, 8,8t

(1.63)
=¢,0+¢,0,+¢;0,+...+¢, 0,

Equation (1.63) in series form is:

5, =260 O (1.64)
k=1

Equation 1.64 for the entire foundation in matrix form is:
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Sy Ci G C3 R @)
S5 G G Cs e Gy | 1O,
S3 G Gy G e Gy, | Oy
= (1.65)
Sn _Cn,l Cn,Z cn,3 Cn,n_ Qn

Equation 1.65 is simplified to:

{st=[clio} (1.66)
To assemble the flexibility matrix of the soil [c], each node is loaded by a unit contact force and
the resulting settlements in all remaining nodes and in the loaded node are calculated. Inverting

the flexibility matrix [c], gives the [n % n] a stiffness matrix of the soil [4s] corresponding to the
contact forces at the n nodal points such that:

10} =[k]is} (1.67)
Complete stiffness formulation for layered soil medium

The foundation will deflect under the action of the total external forces {F} due to known
applied loads {P} and the unknown soil reactions {Q}, where:

{F}=1{P}-10} (1.68)

The following matrix equation expresses the equilibrium of the raft-soil system:

[k,] {8}={P}-{0} (1.69)

Considering the compatibility of deformation between the plate and the soil medium, where the
soil settlement s: equal to the plate deflection wi, Equation (1.67) for Continuum model can be
substituted into Equation (1.69) as:

[k, ]+ 1] )

Equation (1.70) shows that the stiffness matrix of the whole raft-soil system is the sum of the
plate and the soil stiffness matrices, [kp]|+[4s].

{P} (1.70)

It should be noticed that the matrix [£s] is not compatible with the matrix [/p], because the degrees of
freedom in Equation 1.67 differ from that in Equation 1.69. To overcome this problem, Equation
1.67 can be treated by extending the row and column of matrix [4s] in the same manner as the matrix
[k»]. Consequently, the operation of matrix equations can then be accepted.

Equation solver for layered soil medium
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It should be noticed that the matrix [ks] is full unsymmetrical matrix for layered soil medium.
Therefore, the total stiffness matrix for the raft and the soil is also full unsymmetrical matrix.

The system of linear equations is solved by Gauss elimination-technique. Since the total stiffness
matrix is a full matrix, the equation solver 1.70 takes long computation time by applying this
method. The unknown variables in Equation 1.70 are the nodal displacements w: (w: =s:) and the
nodal rotations 6. and 6,: about the x- and y-directions. After solving the system of linear
equation 1.70, substituting the obtained settlements s; in Equation 1.67, gives the unknown
contact forces qi.

1.3.7 Modulus of compressibility method for rigid
raft on layered soil medium (method 8)
(Layered soil medium - Continuum model)

In many practice cases, treating the raft as completely rigid raft is convenient. Here, two
conclusions can be drawn concerning raft settlement:

- For a raft without moments or without eccentricity about both axes, the settlement will
be uniform under the raft.

- For a raft with moments, the raft will rotate as a rigid body and there will be differential
vertical movement between points on the raft, but all points will remain in the same
plane.

Therefore, the displacements are considered linearly distributed on the bottom of the raft.

The method developed here considers the interaction between the raft and soil. It represents the
soil as layered medium or isotropic elastic half-space medium.

In the general case of a foundation with an arbitrary unsymmetrical shape and loading,
according to Kany (1972) the unknowns of the interaction problem, Figure 1.21, are:

- n contact pressures ¢i,

- Rigid body translation of the raft wo at the centroid,

- Rigid body rotation 0 of the raft about the x-axis of the geometry centroid,
- Rigid body rotation 0, of the raft about the y-axis of the geometry centroid.

To determine these n+3 unknowns, n compatibility equations of rigid raft displacements with the
soil settlements at the n nodal points are considered. In addition, the three equations of overall
equilibrium of the raft are also considered.

Formulation of the rigid raft on layered soil medium
Soil settlements
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To describe the method, consider a general raft resting on a layered soil medium (isotropic
elastic half-space soil medium may be also applied) (Figure 1.21). The contact pressure g at a
node i under the raft is replaced by equivalent contact force Q..

For a set of grid points of elements-mesh, the settlement at a point i is obtained from:
S; =Zci,k O, (1.71)
k=1

Considering the entire foundation, Equation 1.71 can be rewritten in matrix form as:

ts}=Ic]io} (1.72)

Inverting the flexibility matrix [c], gives the stiffness matrix of the soil [ks] corresponding to the
contact forces at the n nodal points such that:

{0} =1k, ]is} (1.73)

N
el ? -
c — =
i e X
]
g ]

Figure 1.21  Contact pressure distribution and soil settlement under a rigid raft

a) Section parallel to x-direction
b) Section parallel to y-direction
c) Foundation plan

Rigid body translation W, and rotations 0x and 0y

Due to the raft rigidity, the following linear relation (plane translation) expresses the settlement
1-39
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si at a node 1 that has coordinates (x;, yi) from the geometry centroid:
s, =w,+x,tanf +y, tan6, (1.74)

Equation 1.74 is rewritten in matrix form for the entire foundation as:

S I x

P I x »
83 1 x Wo
= tan® (1.75)
tan0
Sn L 1 xn yn
Equation 1.75 is simplified to:
tsj=[xT {a} (1.76)

Equilibrium of the vertical forces

The resultant N due to external vertical forces acting on the raft must be equal to the sum of
contact forces

N=0,+0,+0,+..+0, (1.77)

Equilibrium of the moments

The moment due to resultant N about the y-axis must be equal to the sum of moments due to
contact forces about that axis

Ne =0 x,+0,x,+0, x; +..+0, x, (1.78)
Similarly, the equilibrium equation for moments about the x-axis is

Ney=Q1 N+ +0 ¥ +..+0, ), (1.79)

Equations 1.77, 1.78 and 1.79 are rewritten for the entire foundation in matrix form as:
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)
0}
N 1 1 1 v 1O
Ne r=|x x, x v X, (1.80)
Ne, NV N e
0,

Equation 1.80 is simplified to:

vi=[x]{o} (1.81)

Substituting Equation 1.73 and 1.76 in Equation 1.81 gives the following linear system of
equations:

V=[x Tk 1xT {a} (1.82)
Solving this system of linear equations 1.82, gives wo, tan 0x, and tan 6,

Substituting these values in Equation 1.76, then in Equation 1.73 gives the following matrix
equation to find the n unknown contact forces.

(0)={k jlxT {a} (1.83)
Substituting also the values wo, tan 0; and tan 6, in Equation 1.72, gives the n settlements.
Case of uniform settlement
For a raft without moments or without eccentricity about both axes, the settlement will be
uniform (si = wo) and the raft will not rotate (0xo = 6y0 = 0). Therefore, the unknowns of the
problem reduce to n contact pressures ¢; and rigid body translation wo.
Derivation of uniform settlement w,
The derivation of the uniform settlement for the rigid raft can be carried out by equating the

settlement si by uniform settlement wo, for all nodes in Equation 1.73. In this case, the contact
forces can be rewritten as a function in the terms 4, ; of the soil stiffness matrix as follows:

O = k,w, + k,w, + kyw, + .. + k,w,
0 = kz,1 w, kz,z W, k2,3 w, + .. + kz,n W,
O, = k3,1 Wo ka,z Wo k3,3 w, + .. + k3,n Wo
(1.84)
Qn = kn 1 Wo + kn,Z Wo + k n3 Wo + + k n,n Wo

1-41



Theory for the calculation of shallow foundations
Chapter 1 Mathematical Models

Carrying out the summation of the all contact forces:

iQ,- =W, Z ikl-“,- (1.85)

=1 j=I

The rigid body translation wo, which equals to the settlement s; at all nodes, is obtained from:

e
2 2k, 2 2k,

i=1  j=1 =1 j=I

(1.86)

Substituting this value of w, in Equation 1.73 gives the n unknown contact forces Q..

It should be noticed that Equation 1.85 is analogous to the Equation 1.8 for Winkler’s model.
Therefore, the summation of terms ki (= N/wo ) may be used to determine the modulus of
subgrade reaction £s.

1.3.8 Modulus of compressibility method for flexible
foundation on layered soil medium (method 9)
(Layered soil medium - Continuum model)

If the foundation is perfectly flexible (such as an embankment), then the contact stress will be
equal to the gravity stress exerted by the foundation on the underlying soil.

For the set of grid points of the foundation, the soil settlements are:

ts=lc]io} (1.87)

If the foundation carries concentrated loads, Equation 1.87 may not be able to determine the
vertical stress at a point below the concentrated load. In this case, the system equation of the
elastic solution can be used to simulate the flexible foundation by assuming very small raft
rigidity D tends to zero, Equation (1.88).

— Eb d3
12(1-v,%)

I

0 (1.88)

In the Equation 1.88, the value of D nearly equal to zero when for an example Ep = 1x10®
[kN/m?]

1.4 Symmetrical system
In many practical problems, both the raft and loading are symmetric. Deninger (1964) by using

the Finite differences and Haung (1974) by using the Finite elements analyzed a symmetrically
loaded raft by taking into account the condition of symmetry. In this case, the raft system
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equations can be solved by considering only a part of it rather than the entire raft. A quarter of
the raft will be analyzed if the problem is symmetrical about both x-and y-axes, a half of the raft
if the problem is symmetrical about x-or y-axis. Therefore, the computational time and computer
storage can be considerably reduced.

Derivation of flexibility coefficients for symmetrical system

The nodal numbering of the set of grid nodes from 1 to n is replaced by another coordinate
numbering from (1, 1) to (N, M) as shown in Figure 1.22.

N

W) i Jo
I
I
* !
r, |
I
: [M 1 N+ 1)
L2 7 2
_ - ___ R e e — X—
|
I
L |
3, 3, |
. . +
(2’ (2a (25 |(29
. . ,I-.
(1, (1, (1, L1, (1, M)
Figure 1.22  Numbering of nodes by symmetrical cases
The settlement equation at a node i can be rewritten as:
n (N, M)
S; = Zci,k O, =5, = zc(r,j),(l,m) O, m (1.89)
k=1 (4, m)=(1,1)
where
C(r, j), (1, m) Flexibility coefficient [m/kN] for a point of coordinate (7, j) due to a unit contact
force Qu, m) [kN] at a node of coordinate (/, m).
[and r Grid numbers in x-direction.
m and j Grid numbers in y-direction.

Case of symmetry about the x-axis

Due to symmetry about the x-axis the following conditions are drawn:
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Q(1,1) = Q(N,l) Q(Z,l) = Q(N—l,l)
Q(I,Z) = Q(N,z) Q(z,z) = Q(N—1,2)
Q(1,3) = Q(N,3) Q(z,3) = Q(N71,3)
(1.90)

Q(l,M) = Q(N,M) Q(2,M) = Q(N—l,M)

Then, the flexibility coefficients can be rewritten in a form of composite coefficients such as:

Ser ) = [C<r,j>,(1,1> + C(r,j>,(N,1)] Oy + [C(r,j),a,z) + c(r,j),<N,2>]Q(1,2) +

(1.91)
:|QN+1

A+l +c
{(r,/‘),(ﬁ’;l,m o [T

Equation 1.91 is simplified to:

o '
Sty = Sty oy T Qan +
1.92
vt 0O va (1.92)

o~ N+
(1,]),(7,M) (T’M)

In general form, the settlement equation in case of symmetry about the x-axis will be:

N+1

(M)
Sen = 22 it Qo (1.93)
(/,m)=(1,1)
where:
C'tr. ). (1, m) Coefficient of flexibility in case of symmetry about the x-axis.

The unknowns in the Equation 1.93 are the contact forces Qq, 1) to Qqn+112, m), as total
Mx*(N+1)/2 values.

Case of symmetry about the y-axis

Due to symmetry about the y-axis the following conditions are drawn:
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Q(l,l) = Q(l,M) Q(1,2) = Q(l,M—l)
Q(z,l) = Q(z,M) Q(z,z) = Q(Z,M—l)
Q(S,M) = Q(S,M) Q(3,2) = Q(3,M—1)
(1.94)

Q(N,l) = Q(N,M) Q(N,z) = Q(N,M—l)

Then, the flexibility coefficients can be rewritten in a form of composite coefficients such as:

Sty = [C<r,j>,<1,1) + C(r,j),a,M)] Oy T o2y T Copratnr ]Q(l,z) +

(1.95)
..t|c +c 0
G A e T [T A
Equation 1.95 is simplified to:
o '
Sty = Cenan Can t a2 Caa
1.96)
ot 0 (L.
o 20 v A
In general form, the settlement equation in case of symmetry about the y-axis will be:
w2
_ !
Sen = 2. nitm Qam (1.97)

(I,m)=(1,1)

where:
C'(r,)), (I, m) Coefficient of flexibility in case of symmetry about the y-axis

The unknowns in the Equation 1.97 are the contact forces Qq, 1) to Qw, [m+1)2), as total
NX(M=+1)/2 values.

Case of symmetry about X-and y-axes

Due to symmetry about both x- and y-axes the following conditions are drawn:

Q(l,l) = Q(I,M) = Q(N,l) = Q(N,M)
Q(I,Z) = Q(l,M—l) = Q(N,Z) = Q(N,M—l)

Q(1,3) = Q(I,M—Z) = Q(N,3) = Q(N,M72) (1 98)

Then, the flexibility coefficients can be rewritten in a form of composite coefficients such as:
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Sty = [Cu,j),(l,l) TCo pam T vy T C(r,jx(N,M)] Oy

+ [C(r,n,(l, 2) T € p.amn T v T €0 v, mn ] Qa2 (1.99)

( ,]),(TaT)

27 2

+~~+{4cr N+l M+l :|QN+1 M+

Equation 1.99 is simplified to:

o '
Sty = Sty iy T o Qan +
/ 1.100

.t N+l M+1 QE@ ( )

R

In general form, the settlement equation in case of symmetry about both x-and y-axes will be:

N+l M+1

2. 2
St = Zcfr,n,(l,m Qt.my (1.101)

(1,m)=(1,1)

where:
C'tr ). (1, m) Coefficient of flexibility in case of symmetry about both x-and y-axes

The unknowns in the Equation 1.101 are the contact forces Qq, 1) to Qqn+112, (M+112), as total
(N+1)X(M=+1)/4 values.

The settlement equations of the antimetrical cases can be derived in a similar manner to that of
symmetrical case.

1.5  Antimetrical system

If the raft is symmetric in shape and unsymmetric in loading, it will be possible to divide this

general case of loading into two cases of symmetrical and antimetrical loading as shown in
Figure 1.23. Then, the analysis can be carried out for half the raft twice.

Loading P Loading case 4 Loading case B
_ a v
P : P 0.5(P1 - Py) : 0.5(Ps- Py) 0.5(P,+ Ps) §0.5(P2+ Py
T R i S S ¥ i B
P i P -0.5(P1 - P3)1-0.5(P2- Ps) 0.5(P1+ P3)10.5(P2+ Ps)
General case of loading Symmtrical case of loading A  Antiymmtrical case of loading B
About the x-axis in direction of the x-axis
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Figure 1.23  General case of loading by symmetrical and antimetrical loading

It should be noticed that by using the advantage of symmetry, the original flexibility matrix [c],
which has dimension of [NxM]* will be reduced to dimension of [(N+1/2)xM]?, [Nx(M+1)/2]?
and [(N+1)/2x(M+1)/2]* in the cases of symmetry about x-axis, y-axis and double symmetry
about both x-and y-axes, respectively.

1.6  Boundary conditions by symmetrical and antimetrical cases
General boundary conditions for analysis of the raft in bending are zero deflections w and
rotations 6x and 6, along the fixed edge. Zero rotations about the x-axis (0x = 0) or the y-axis (0y

= 0) along the simply supported edge whenever is applicable in direction x or y.

For symmetrical and antimetrical cases of loading some corresponding appropriate boundary
conditions must be applied to all nodes on the axis of symmetry as follows:

1) A symmetry about x-axis makes the rotations 0x for all the nodes along the x-axis to be
zero, Figure 1.24a.

i1) A symmetry about y-axis makes the rotations 0, for all the nodes along the y-axis to be
zero, Figure 1.24b.

111)  An antisymmetry about x-axis makes the deflections w for all the nodes along the x-axis
to be zero, Figure 1.24c.

iv)  An antisymmetry about y-axis makes the deflections w for all the nodes along the y-axis
to be zero, Figure 1.24d.

This can be easily handled by setting the element values of the corresponding column and row in
the entire stiffness matrix zero.
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a) Symmtrical case about x-axis b) Symmtrical case about y-axis
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Figure 1.24  Boundary condition for symmetrical and antisymmetrical cases

1.7 Bilinear soil behavior

A simplified way was supposed to improve the deformation behavior of the soil by dividing the
stress settlement curve into two regions, Figure 1.25. In the first region the ground will settle
until reaching an overburden load ¢v according to the modulus of compressibility Ws. In the
second region after reaching the load ¢» the ground will settle more under load g according to
the modulus of compressibility s until reaching the total load go.

1-48



Theory for the calculation of shallow foundations

Chapter 1 Mathematical Models
Bearmg capacity loadlng
qul .................... Bre .. ......................
Loadéin
qo }... g . g .............................................................................................
q : :
< 5 : P
5 q |- .................... L@adlngpart .......................
—
! 1
| Reloading
s S

Settlement

Figure 1.25  Load settlement diagram (bilinear relation)

Therefore, The settlement s; of the foundation can be derived from two variations such that:

S, =8y, +5g, (1.102)

1

Equation 1.102 for the entire foundation in matrix form is:
{s)=loy J+ s ) (1.103)
It can be generally said that the total contact pressure on the foundation is given by:

9,; =9, t 95, (1.104)

The bilinear relation of the soil deformation may be taken into consideration as follows:
At first it should be carried out a primary calculation by one of the following two cases,
Case (1): Qui < Qo at all nodes i on the grid of the raft mesh

The settlement equation will be:

(1.105)

tsy=ley 1O, J+le: MO, )
[k, Jisi =k, o lew J10, 1+ 10s }

Then, the raft equation due to bilinear soil behavior in a matrix form is given by:
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[k, + (k1] )= P} + [k, Jle )- DO (1.106)

Case (2): Qui > Qo at all nodes i on the grid of the raft mesh

The settlement equation will be:

(1.107)
[ksW]{S = {Qo}
Then, the raft equation due to bilinear soil behavior in a matrix form is given by:
[k, [+[&,, 1] 5} ={P} (1.108)

If one of the above two cases is not existed, an iterative solution for the settlement equation will be
necessary.

1.8  Variable foundation levels

1.8.1 Variable foundation levels by neighboring rafts

Sometimes, by determination the influence of the neighboring rafts or the interaction among
system of rafts, the foundation levels of the rafts are variable as shown in Figure 1.26. In this
case, the foundation levels of the rafts must be related to a specified datum Hn.

The z-value of flexibility coefficient for any soil layer under the raft can be expressed by:

Zy=(z;—t;)—H,+H, (1.109)

It should be noticed that the foundation level H» under the specified datum is negative.
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Figure 1.26  Settlement influence of raft £ on the raft i

1.8.2 Variable foundation levels with variable raft thickness
By analysis of rafts, there are three possibilities to define the raft thickness:

a) The raft thickness for the entire raft is constant. In this case, there is only one foundation
level tf (Figure 1.27a).

b) Variable raft thickness with constant foundation level. In this case, the foundation level
is also constant tf (Figure 1.27b).

c) Variable raft thickness with variable foundation level. In this case, the foundation level is

variable (Figure 1.27¢). The z-value of flexibility coefficient for any soil layer under the
raft can be expressed by:

Z =2y —14) (1.110)
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Figure 1.27  Three possibilities concerning raft thickness

1.9 Effect of groundwater pressure
If the water table is located above the foundation, the foundation will be exposed to an

additional negative pressure gw due to the effect of groundwater. In this case, the system
equation will be:

[k, J+[k., 1] 5} ={P}-10,} (L111)

1.10 Effect of temperature difference

Sometimes, a temperature difference At occurs between the upper and lower surface of the raft.
An example for this case is when a fire oven is constructed directly on the raft in an industry
structure.

The deformation in the raft due to temperature difference can be evaluated as follows:

The nodal displacement {6} at a node i of the raft must be replaced by {6} - {A}, in which:

(1.112)

By assuming the warped surface as part of a sphere, it can be proven from geometry, Figure
1.28, that:
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;<G AT [m] (1.113)
" 2d '

where:

ti Amount of curvature [m] at a node i

or Coefficient of thermal expansion of concrete [1/°¢]

ri Distance [m] from a node i to the center of the raft where curling is zero

d Thickness of the raft, [m]

AT  Temperature difference between the upper and lower surface of
raft in which AT =T, - Tu, [°c]

T Temperature at the upper surface of the raft, [°c]

T Temperature at the lower surface of the raft, [°c]

Positive deflection when the raft warps down with a temperature at the top bigger than that at the
bottom. Due to temperature difference, the total settlement on the foundation can be

expressed as:

{sy=ts,j+1s,} (1.114)
where:
{so}  Vector of the settlement due to the loads acting on the foundation

{sr}  Vector of the additional displacement due to the temperature difference

Then, the raft equation due to influence of temperature difference in matrix form is:

[k, ]+ [k.1] {8} = (P} [k ]s, ) (1.115)

1-53



Theory for the calculation of shallow foundations

Chapter 1 Mathematical Models
J d T,=1T
| |
f 1 T.=1
i To>Tu

Figure 1.28  Temperature effect on the raft foundation

1.11  Analysis of ribbed raft

The traditional structural analysis of the foundation using Finite elements-method required two
main types of elements. The first type is grid element used to analyze strip foundations or grid
foundations. The second type of finite elements is the plate element used to analyze footings or
rafts. The conventional methods for analysis of foundations consider only one type of elements.

The combined problems of foundations with others stiffeners were treated by many authors.
Deninger (1964) presented a method for analysis of rectangular rafts that was stiffened through
rigid walls by Finite differences-method. Zienkiewicz/ Cheung (1970) introduced a solution for
floor slab with edge beams. Lee/ Brown (1972) analyzed plane frame on two dimensional
foundations by using beam elements for the frame and plate bending elements for the
foundation. Mikhaiel (1978) considered the effect of shear walls and floor rigidity by using a
combination between plate bending and plain stress elements. Bazaraa/ Shaheen/ Sabry/ Krem
(1991) studied the effect of tie beams on the behavior of the footings. The footings were
represented by the plate bending elements, while the tie beams were represented by grid
elements. Bazaraa/ Ghabrial/ Henedy (1997) studied the effect of boundary retaining walls on
the raft behavior by using a mesh of plate bending-plain stress element combinations.

Ribbed raft may be used for many structures have heavy loads or large spans, if a flat level for
the first floor is not required. Consequently the volume of concrete is reduced. Such structures
are silos and elevated tanks. Although this type of foundation has many disadvantages if used in
normal buildings, still uses by many designers. Such disadvantages are the raft needs deep
foundation level under the ground surface, fill material on the foundation to make a flat level
and an additional slab on the fill material to construct the first floor. The use of ribbed raft
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relates to the simplicity of analysis by hand calculations.

ELPLA was developed to analyze ribbed raft using a combination of two finite element types.
The raft is represented by plate bending elements according to the two-dimensional nature of
foundation. Grid elements are considered to represent the girder action along the raft. The whole
stiffness matrix of the raft with girders is the sum of the two stiffness matrices of the raft and
girders.

Ribbed raft can be analyzed using plate elements together with grid elements placed in the
region close to plate element boundaries as shown in Figure 1.29. To consider the compatibility
of deformation between the plate and grid elements, a grid element has the same degree of
freedom of plate element at each intersection node must be chosen.

4 4 4 4 p
node 4

+—o s *
Plate /u—q 1 'y /Grid
[ =
* ' . *—9

Figure 1.29  Finite elements-net of ribbed raft

The equilibrium of the foundation for simple assumption model is expressed by:

[k, J+[x. 1] 45}

{P}—-10} (1.116)

While for Winkler’s and Continuum models is expressed by:

[k, J+ e, J+ 1] 4o}

{P} (1.117)
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2.1 Introduction

Most of the available solutions used to determine the flexibility coefficient, or the modulus of
subgrade reaction, assume that the subsoil consists of a homogeneous layer. In reality, the soil
consists of different material features in vertical and horizontal directions. In practice, a number
of vertical soil profiles defines the soil under the foundation. Each one has multi-layers with
different soil materials. Therefore, three-dimensional coefficient of flexibility, or variable
modulus of subgrade reaction, must be taken into consideration. Kany (1972) determined the
two-dimensional flexibility coefficient for beam foundation by determining flexibility
coefficients for the existing boring logs first. Then, by interpolation can obtain the other
coefficients outside the boring logs. The following paragraph describes the methods that are
available in program ELPLA to determine the three-dimensional coefficient of flexibility or
variable modulus of subgrade reaction.

2.2 Subareas method

El Gendy (1994) proposed a simplified method to obtain the three-dimensional coefficient of
flexibility or variable modulus of subgrade reaction by dividing the whole foundation area into
subareas. Each subarea corresponds to one of the soil boring logs as shown in Figure 2.1. The
method may be used if there is no great difference in the soil layers of the boring logs.

e8]
(5}

\\\/ — ‘/' [,‘\'
e YRR
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Figure 2.1 Boring locations and subareas

2.3 Interpolation method

Kany/ El Gendy (1995) proposed an accurate method to determine the three-dimensional
flexibility coefficient or variable modulus of subgrade reaction for irregular foundation by
interpolation, as described below.
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2.3.1 Determination of variable modulus of subgrade reaction ks

Initially, a number of main moduli ksm equal to the number of boring logs should be determined.
Each modulus corresponds to one of the soil boring logs and is calculated from the elastic
material of that boring.

The following steps and Figure 2.2 describe the determination of the main modulus Ksm:

)

ii)

iii)

First, assume average or linear distribution of contact pressure ¢i on the bottom of the
foundation.

Find the soil settlements Si due to assumed contact pressures. According to Ohde (1942),
the settlement is given by:

s, =2Ci,j q; (2.1)
i

where
ci,j Flexibility coefficient of a node i due to a unit load at field j.

Find the nodal modulus ki at each node on the bottom of the foundation due to the above
soil settlements and pressures. According to Winkler (1867), the modulus ki at node i is
given by:

k=3 2.2)

Find the mean modulus ksm for the whole foundation area of nodes n
1 n
K, =— Z K; (2.3)
n

The steps ii to iv are repeated for each boring.
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Settlement due to linear soil pressure

Nodal modulus of subgrade reaction
Figure 2.2 Determination of main modulus Ksm

Once the mean moduli ksm has been calculated, the variable modulus of subgrade reaction ks can
be determined for all nodes on the bottom of the slab as follows

It is assumed that the foundation area is divided into three region types as shown in Figure 2.3.

Type |

This region is a triangular region. Three boring logs confine such a region. To determine the
modulus ks for a node lying at a point (X, ¥) in a triangular region, assumes a plane function
passed through the three boring logs to represent the modulus ks such that

k. =a+bx+cy (2.4)

Such a function will involve three undetermined coefficients: a, b and c. These coefficients can
be determined using a system of three linear equations consists of the known mean moduli Ksm
and coordinates (X, y) for the three boring logs. Figure 2.3 illustrates an example of region type I
through the dark shaded area, which is confined by boring logs B1, B3 and B4.

Type Il

One or more sides of the foundation and two boring logs confine this region. Using a linear
interpolation between the mean moduli ksm for the two boring logs, can obtain the modulus ks for
a node lying in this region. Equation 2.5 and Figure 2.3 indicate an example for region type Il
through the area confined by boring logs B1, B4 and foundation sides.
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ks = klsm +Iﬂ(kzsm - klsm) (25)

where

k'sm and k*sm  Mean moduli of boring logs B1 and B2, respectively
I Distance between boring B1 and B2

n Distance between the node and boring B1

Type 11

One or more sides of the foundation and one boring confine this region. The modulus ks for a
node lying in this region is equal to the mean modulus ksm of that boring. Figure 2.3 indicates an
example for region type III through the area confined by boring B3 and foundation sides.

I Ed

/ Re'g:ion type 11}

-"

! o

Figure 2.3 Boring locations and region types

2.3.2 Determination of three-dimensional coefficient of flexibility c; j

In a similar way to the previous analysis for Winkler’s model, the foundation area is divided into
the same three region types. Equation 2.4 for region type I can be rewritten as:

C.; =a+bx+cy (2.6)

As by determination of the main moduli ksm for Winkler’s model, main flexibility coefficients
Cmi,j are determined for boring logs. Then, the undetermined coefficients a, b and ¢ in this case,
are obtained from the mean flexibility coefficients Cm i j of the three boring logs and their
coordinates (X, Y). Equation 2.5 for region type II can be rewritten as:

2-5
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C.;=Clmij +%(C2mi,j —clmi,,-) 2.7)
where

c'mi,j and ¢*ni,j Mean flexibility coefficients of boring logs B1 and B2, respectively.

Region type 11 is the simplest one. The flexibility coefficient Ci,j of this region is determined
from the material of its corresponding boring.

It is important to note that:

- If only two boring logs define the subsoil under the foundation or the boring logs lie in
the same line, region type I will be eliminated.

- However the above analysis of three dimensional subsoil is derived for isolated
foundation, but it is also possible to use this analysis for system of footings or
foundations as shown in Figure 2.4.
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Figure 2.4 System of three foundations I, II and III with two additional
external foundations IV and V on irregular subsoil

2.3.3 Numbering of boring logs

The arrangement of subareas or triangle regions leads to different results of modulus of subgrade
reactions or flexibility coefficients. Therefore, a role may be used here to set the subareas for the
subareas method or triangle regions for the interpolation method automatically. According to the
role, defining a boring as pole for the other boring logs is necessary. This boring must be
numbered by No. 1. Figure 2.5 shows different arrangements of triangle regions when five
boring logs defining the subsoil.
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2.3.4 Determination of limit depth for irregular subsoil

The assumption of isotropic elastic half-space soil medium requires an infinite soil layer having
the same compressibility under the foundation. Practically, the soil consists of many layers with
different soil materials. For layered soil medium the number of layers in a boring to be
considered when determining the flexibility coefficient Cik depends on the level of the rigid
surface or on the limit depth zg where no settlement occurs. The limit depth zg in a system of
foundations is the level of which the stress cu reaches a standard ratio & of the initial vertical
stress ov as indicated in Figure 2.6 and Equation 2.8.

(2.8)

o, =G oy
where
ou=oe+op Stress due to the foundation load and the external foundation loads, [kN/m?]
OE Stress due to the foundation load, [kN/m?]
oD Stress due to the external foundation loads, [kN/m?]
ov = XyzZ Stress due to the self-weight of the soil layers, [kN/m?]
Y Unit weight of the soil layer, [kN/m?]
z Depth of the soil layer, [m]

Examination from Amman/ Breth (1972) showed that the values & may be taken as § = 0.8,
especially for reloading soil. The standard value of £ according to DIN 4019 is £=0.2.

GS

is >

Stress due to

aw_ (D
— @

©

Initial the external /|
vertical foundation | ©
stress ov / load op [

|

(GD

Stress due to the @
Yz foundation load og ,
oV ou=¢&ov v

Figure 2.6 The limit depth zg under a foundation

The problem by the three-dimensional subsoil model is that, many boring logs characterize the
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soil under the system of foundations. Kany/ ElI Gendy (1997) solved this problem for the three-
dimensional subsoil model. In which main limit depths for each foundation should be
determined. Each limit depth corresponds to one of the soil boring logs and that foundation. It is
determined from the material of that boring and the stress under that foundation. The soil
pressures under foundations are assumed to be known and distributed uniformly on the bottom
of the foundations.

To take into account the irregularity of the subsoil material in X and Yy directions considering the
effective soil layers, the flexibility coefficient Cik must be determined using the limit depths.
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Example 2.1: Analysis of a square raft on irregular subsoil
1 Description of the problem

This example is carried out to show the influence of irregular subsoil on the values of
settlements, contact pressures and moments.

The analysis of the square raft is carried out by the two familiar types of soil models: Winkler’s
and Continuum models for elastic foundations, besides the analysis of rigid raft on Continuum
model, using the following three calculation methods:

Method (3):  Variable modulus of subgrade reaction method
Method (7):  Modulus of compressibility method
Method (8): Rigid raft on compressible subsoil

A square raft of 10 [m] side is subdivided into 144 square elements as shown in Figure 2.7. The
raft thickness is d = 0.4 [m].

2 Soil properties

Three boring logs characterize the subsoil under the raft. Each boring has a soil layer of
thickness 10 [m], resting on a rigid base as shown in Figure 2.7. The modulus of compressibility
Es represents the irregularity of the soil material in X- and y-directions, which in this example is

chosen to be variable.

The moduli of compressibility of the three borings are:

Es = 6666.67 [KN/m?]
Es2 = 1.5 % Esi [kN/mZ]
Es = 2.0 x Es [KN/m?]
with average value of Es= 10000  [kN/m?]

The moduli of compressibility lead to the following mean moduli of subgrade reactions for the
three borings:

Ksmi = 1448 [KN/m°]
Ksm2 = 1.5 x Ksmi [kN/m3]
Ksm3 = 2.0 % Ksmi [kN/m3]
with average value of ksm= 1563 [KN/m’]

Possion’s ratio is vs = 0.3 for the soil material of the borings.
3 Loads
The external loads are chosen to be symmetrical about the raft center. The loads are four

symmetrically loads, each of P = 500 [kN] as shown in Figure 2.7. The self weight of the raft is
ignored.
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Figure 2.7 a) Raft numbering, loading and dimensions
b) Soil cross-section
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Figure 2.9 Boring locations and region types (Interpolation method)

4 Raft material

The raft material is supposed to have the following parameters:

Young’s modulus Eb =2x107 [kN/m?]
Poisson’s ratio Vb = 0.25 [-]
Unit weight of raft material b =0.0 [kN/m’]
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Unit weight of raft material is chosen yb = 0.0 to neglect the own weight of the raft.
5 Analysis of the raft

For comparison, the flexibility coefficient and the modulus of subgrade reaction are determined
by the following two methods:

- Subareas method, Figure 2.8.
- Interpolation method, Figure 2.9.

6 Results and evaluation

Figures 2.10 and 2.11 show the contour lines of settlements for each of the two types of soil
models (Winkler's model (3) and Continuum model (7)), while Figures 2.12 shows contour lines
of settlements for the rigid raft on the Continuum model (8). The flexibility coefficients for the
three calculation methods are obtained using the interpolation method. As expected, the
settlement form is unsymmetric about the raft center when the irregularity of the subsoil is
considered, although the raft is symmetric in shape and carries symmetrical loads. The Figures
2.10 to 2.12 show that the boring which has minimum value of Es (boring B1) leads to higher
settlements at nodes close to that boring.

Figure 2.13 shows the contour lines of settlements when the soil is a regular layer having a
constant value of Es = 10000 [kN/m?]. A comparison between Figure 2.12 and Figure 2.13
shows that a great variation of settlement shape when using variable Es values. This means that
the detailed variation of soil properties with vertical and horizontal directions must be taken into
account.

Figures 2.14 to 2.17 present a comparison between the results computed by the interpolation
method and that of the subareas method. Figures 2.14 and 2.15 show the contact pressures at the
edge of the raft (node 157 to 169) for the two types of soil models (Winkler’s model (3) and
Continuum model (7)), while Figure 2.16 shows the contact pressures at the edge of the raft for
the rigid raft on Continuum model (8). Figure 2.17 shows the bending moments at the middle of
the raft, section I-I, for Continuum model (7). From the above comparison, it can be concluded
that the continuity requirement of the soil material between the adjacent borings is not met when
using the subareas method. Therefore, it is expected that the results of the subareas method will
not be as accurate as those of the interpolation method, especially if the borings have great
differences in the soil material. This is explained in Figures 2.14 to 2.17 where the subareas
method leads to a sudden change in the contact pressures and moments between two adjacent
subareas.
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Figure 2.10  Contour lines of settlements [cm] for Winkler’s model (3)
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Figure 2.11  Contour lines of settlements [cm] for rigid raft on Continuum model (8)
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Figure 2.13  Contour lines of settlements [cm] for Continuum model (7), constant Es




Theory for the calculation of shallow foundations

Chapter 2

Foundations on Irregular Subsoil

Figure 2.14

Figure 2.15

Node No.

—— Constant Es
w- Qubareas

Interpolétion. method '

104, . o UTUE U o e L e e
k9 . . . . .
fo, L : : : : : : . : . :

Contact pressures [kN/m?]

20

Contact pressures at the raft edge for Winkler’s model (3)

Node

Contact pressures [kN/m?]

60 s

75

Contact pressures at the raft edge for Continuum model (7)



Theory for the calculation of shallow foundations
Chapter 2

Foundations on Irregular Subsoil

Node

167 169

50

75

Contact pressures [kN/m?]

100

125

Figure 2.16

Node

83 8
0 +———t—F—

Contact pressures at the raft edge for rigid raft on Continuum model (8)

5

10 4

! ! H H ! f
ii—— Constant Es I
........... Subareas
braasd! ..E L Interpolatlon method ..... ? ........................ Tooflans

20 -

Moments [KN.m/m]

60

Figure 2.17

Moments at the raft middle for Continuum model (7)



Theory for the calculation of shallow foundations
Chapter 2 Foundations on Irregular Subsoil

Example 2.2: Analysis of an irregular raft on irregular subsoil
1 Description of the problem

A general example is carried out to show the applicability of the different mathematical models
for analysis of irregular rafts on irregular subsoil.

In one case the raft carries many types of external loads: concentrated loads [kN], uniform load
[kN/m?], line load [kN/m] and moments [kN.m] in both X-and y-directions as shown in Figure
2.18.

Figure 2.18  Raft dimensions in [m] and loads
2 Soil properties

Three boring logs characterize the subsoil under the raft. Each boring has three layers with
different soil materials. The moduli of compressibility of the three layers for loading are Esi
9500 [kN/m?], Es2 = 22000 [kN/m?] and Es3 = 120000 [kN/m?] while for reloading are Wsi =
26000 [kN/m?], Ws2 = 52000 [kN/m?*] and Ws3 = 220000 [kN/m?]. Poisson’s ratio is 0.0 [-] for all
soil layers. The level of foundation is df = 2.7 [m] while the level of ground water is GW = 1.5
[m]. Unit weight of the soil above the ground water is ys = 19 [kN/m’] while under the ground
water is y's = 9 [kN/m?]. The effect of reloading and water pressure is taken into account. Figure
2.19 shows boring logs and locations.

3 Raft material and thickness

The raft material is supposed to have the following parameters:

Young’s modulus Eb =2x107 [KN/m? ]
Poisson’s ratio Vb = 0.25 [-]

Unit weight of raft material b = 0.0 [KN/m?]
The raft thickness d = 0.5 [m]
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Unit weight of raft material is chosen to be yb = 0.0 to neglect the own weight of the raft in the
analysis.
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Figure 2.19  a) Boring locations and interpolation regions
b) Boring logs B1 to B3



Theory for the calculation of shallow foundations
Chapter 2 Foundations on Irregular Subsoil

4 Analysis of the raft
The analysis of the raft is carried out by the eight mathematical calculation methods in Table
2.1. The methods are represented by the three subsoil models: simple assumption, Winkler’s and

Continuum models.

Table 2.1 Calculation methods

Method Method
No.
1 Linear contact pressure
2 Constant modulus of subgrade reaction
3 Variable modulus of subgrade reaction
4 Modification of modulus of subgrade reaction by iteration
5 Modulus of compressibility method for elastic raft on half-space soil medium
6 Modulus of compressibility method for elastic raft on layered soil medium (iter.)
7 Modulus of compressibility method for elastic raft on layered soil medium (eli.)
8 Modulus of compressibility method for rigid raft on layered soil medium

To carry out a comparison for the different calculation methods and mathematical models, the
example is analyzed first by the modulus of compressibility method (7) for layered soil medium.
Then, the same example with the same loads is analyzed again by the other seven different
numerical calculation methods. The elastic parameters are assumed to represent the same type of
soil, which is considered in the first analysis. By weighing the elastic parameters of each layer in
a multilayered system according to its influence on settlement an "equivalent" modulus of
compressibility for the entire subsoil mass for isotropic elastic half space model (5) and an
"equivalent" constant modulus of subgrade reaction for Winkler’s model (2) are determined.
Main moduli of subgrade reactions for the three boring logs can be also determined for
Winkler's model (3). The equivalent elastic parameters can then be used to obtain the
settlements, contact pressures, moments and shear forces in the raft by the different calculation
methods.

The equivalent elastic parameters are:

For isotropic elastic half space model (5)

Esm = 9500 [kN/m?]

For constant modulus of subgrade reaction model (2)
Ksm = 3517 [kN/m3]

For variable modulus of subgrade reaction model (3)
Ksmi = 5254 [kN/m’] for Boring B1
ksm2 = 2982  [kN/m’] for Boring B2
ksms = 2315 [kN/m’] for Boring B3

5 Results and discussion

The extreme values of the results are given in Table 2.2. Figures 2.20 to 2.28 show the
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settlements and contact pressures on the raft for the eight calculation methods.
Table 2.2 Maximum and Minimum values of settlements S and contact pressures ( for the
different calculation methods

Smax. Smin. (max. Omin.
Method (em] | [em] | [KN/m?] | [kN/m2]
Linear contact pressure (1) - - 127 65
Constant modulus of subgrade reactions (2) 5.38 0.46 189 16
Variable modulus of subgrade reactions (3) 6.52 0.47 194 18
Modification of modulus of subgrade (4) 4.42 1.15 586 19
Isotropic elastic half space (5) 11.28 | 8.51 572 16
Modulus of compressibility-elastic raft (6 and 7) 4.42 1.15 586 19
Modulus of compressibility-rigid raft (8) 4.24 1.51 560 48

Figure 2.20  Contour lines of settlements [cm] and contact pressures [kN/m?] in bracts for
constant modulus of subgrade reaction method (2)
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Figure 2.21  Contour lines of settlements [cm] for variable modulus of subgrade reactions (3)

Figure 2.22  Contour lines of settlements [cm] for isotropic elastic half space model (5)
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Figure 2.23  Contour lines of settlements [cm] for methods (4), (6) and (7)
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Figure 2.24  Contour lines of settlements [cm] under rigid raft (8)
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Figure 2.25  Contour lines of contact pressures [kN/m?] by method (1)

Figure 2.26  Contact pressures [kN/m?] for isotropic elastic half space model (5)
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Figure 2.28  Contact pressures [kN/m?] under the rigid raft (8)

Through Table 2.2 and Figures 2.20 to 2.28 the following conclusions can be drawn:

It is important to say that the linear contact pressure method (1) does not depend on the
behavior of the subsoil mass below the foundation and there is no compatibility between
raft deformation and soil settlement in this method.
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- The elastic parameters for isotropic elastic half space (5) and constant modulus of
subgrade reaction (2) are valid for the whole subsoil mass but for the variable modulus of
subgrade reaction (3) are variable from a node to another.

- For the two iteration methods (4 and 6) and rigid raft (8), the elastic parameters are the
same as those of the first analysis method (7) and can be taken without any change.

- The influence of surrounding structures and external loads can be taken into
consideration only for the Continuum model (methods 4, 5, 6, 7 and 8).

- The influences of temperature change cannot be taken into consideration for the Linear
contact pressure method (1).

- Furthermore, the influence of reloading can be taken into consideration only for the
methods 4, 6, 7 and 8.

- The results of calculation of the rigid raft (8) do not change from raft thickness d = rigid
tod = oo,

- As from the assumption of the isotropic elastic half space model (5), the soil under the
foundation extends to an infinitely thick layer. The settlement will be similar in shape but
greater in value to that of the layered model (7), Figures 2.21 and 2.23.

- The Continuum model (methods 4, 5, 6, 7 and 8) shows that the contact pressure is
minimum on the middle of the raft and maximum at its edges, Figures 2.26, 2.27 and
2.28.

- Figure 2.25 shows that the contact pressure for the Linear contact pressure method (1)
takes linear form under the raft.

- As from the assumption of Winkler’s model (method 2) the soil pressure i at any point i
will be equal to the settlement Si at that point multiplied by the modulus of subgrade
reaction ks. The contour lines of contact pressures will be similar to that of settlements,
only the values of Si should be multiplied by ks. Therefore, the contour lines of both
contact pressures and settlements are plotted in a figure for the Winkler’s model (2) as
shown in Figure 2.20.

- It can be seen from Table 2.2 that the maximum and minimum values of contact
pressures for the Linear contact method (1), constant modulus of subgrade reaction (2)
and variable modulus of subgrade reaction (3) are nearly the same. In addition, the
maximum and minimum values of settlements for constant and variable modulus of
subgrade reaction methods (methods 2 and 3) are nearly the same.
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Example 2.3: Analysis of system of footings on irregular subsoil
1 Description of the problem

The influence of irregularity of the subsoil material on the behavior of foundations is illustrated
through the study of the differential settlements for system of 9 footings. Consider the group of
footings shown in Figure 2.29 and Table 2.3. Thickness of footings is d = 0.5 [m]. Unit weight
of the footing is yr =25 [kN/m’]. Arrangement of footings and footing loads are shown in Figure
2.29a.

2 Soil properties

The group of footings resting on a three-dimensional subsoil model. Four boring logs
characterize the subsoil under the footings. Each boring has three layers as shown in Figure 2.29
and Table 2.4. Poisson’s ratio is vs = 0.3 [-] for all soil layers. The level of ground water is GW =
1.3 [m] while the level of foundation for all footings is ti = 2.2 [m] under the ground surface. The
effects of reloading and water ground are taken into account. Boring locations and section
through B1-B2 are shown in Figure 2.29.

Table 2.3 Loads, dimensions and origin coordinates of the footings
Footing L(l))ad Dimensions Origin coordinates
No. TS Bt B B N B I B N
1 2500 2.0 2.0 1.00 1.00 0
2 900 1.5 1.5 6.25 1.25 0
3 800 1.5 1.5 11.25 1.25 0
4 2500 2.0 2.0 1.50 6.00 0
5 5400 3.0 3.0 5.00 6.00 0
6 950 1.5 1.5 11.25 6.25 0
7 5400 4.5 2.0 2.12 8.7 45
8 3000 2.5 2.0 5.75 11.00 0
9 2000 2.0 1.5 10.00 10.25 0
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Theory for the calculation of shallow foundations

Chapter 2 Foundations on Irregular Subsoil
Table 2.4 Soil material and layer levels for the four borings
Layer level Modulus of elasticity for o
under the Unit weight
Layer 1 Type of soil d f the soil
No. ype ol sot groun loading reloading o1 the so1
surface z Es [kN/m?] Ws [kN/m?] vs [KN/m3]
[m]
1 Sand 1.3 98 000 135000 19
2 Sand 12/11/14/10 98 000 135 000 11.2
3 Silt 40 9500 12 000 12
3 Analysis and results

Because the footing dimensions are relatively small, the footings may be treated as rigid footings
resting on compressible subsoil. In this case, it is enough to determine the soil settlement at the
footing centers. For a good judgment on the proposed analysis, the group of footings has been
treated four times according to the following cases:

1) The limit depths for all boring logs are obtained due to the maximum loaded footing
(footing 5).

i1) The limit depths for all boring logs are obtained due to the minimum loaded footing
(footing 3).

111) Without limit depths and the last layer for each boring extend to a depth of 40 [m] below
the ground surface.

iv) The limit depth is obtained through interpolation.

The limit depths are determined at the level of which the stress cu due to footings reaches the
ratio { = 0.2 of the initial vertical stress ov.

The limit depths of boring B1 to B4 due to footing 3 are shown in Figure 2.30 while those due to
footing 5 are shown in Figure 2.31. The limit depths for the maximum loaded footing (footing 5)
are ranged from 16.90 [m] to 17.00 [m] while those for the minimum loaded footing (footing 3)
are ranged from 11.31 [m] to 11.39 [m]. Table 2.5 shows the central settlements of the footings
for the four cases. As expected, the numerical results show that the limit depths have a
significant influence on the settlement of the footings. It can be seen from Table 2.5 that there is
a great difference in the settlement values by applying the four cases. Case 1 gives high values of
settlement where that of case ii is small and that of case iii is very high. This proved that the
interpolation analysis is a suitable procedure to study the interaction of a group of footings.
Table 2.5 shows also that cases 1 and 11 give only the accurate settlements under footings 5 and 3,
respectively. Where the settlement under footing 5 is Ss = 3.70 [cm] while that under footing 3 is
$3=0.48 [cm].
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Table 2.5 Central settlements of the footings
Calculation of central settlement [cm] based on
FootingNo. | Limitdepths | Limitdepths | Withoutlimit | LCimitdepths
related to related to depths related to 1.ts
footing 5 footing 3 Z=40 [m] corrfz S(E)t(i)rrllgmg
1 2.58 0.65 6.07 1.74
2 2.55 0.51 6.19 1.80
3 1.81 0.48 4.86 0.48
4 4.15 1.13 8.35 3.99
5 3.70 0.44 8.05 3.70
6 2.30 0.27 591 1.55
7 4.56 1.62 8.67 4.34
8 3.48 0.53 7.59 3.26
9 2.33 0.03 6.05 1.72




Theory for the calculation of shallow foundations
Chapter 3 Neighboring Foundations and Buried Structures

Chapter 3
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3.1 Introduction
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In many situations, it becomes important to assess the behavior of a foundation due to its
interaction with another neighboring foundation or external load.

First, It must be distinguished between two types of problems concerning neighboring
foundations:

- The first problem occurs when new building is constructed beside existing one. In this
case, the new building will cause an additional settlement under the existing structure
due to the increase of stress in soil.

- The second problem occurs when structures are constructed simultaneously. In this case,
there will be interaction of foundations due to the overlapping of stresses through the
soil medium, however the structures are not statically connected. The interaction of
foundations will cause additional settlements under all foundations.

The study of interaction between a foundation and another neighboring foundation or an external
load has been considered by several authors. Mikhaiel (1978) presented an application on the use
of the elastic half space model in the determination of the effect of neighboring loads on the
existing building. Selvadurai (1983) examined the interaction between a rigid circular
foundation and an external load.

The additional settlement due to neighboring foundation, external loads and buried structures
can be considered as follows indicated in the next paragraphs.

3.2 Influence of neighboring foundations

Figure 3.1 shows a neighboring foundation B. This foundation causes an additional settlement

on the examined foundation A. The additional settlement due to neighboring foundation can be
considered as follows :
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Y

Figure 3.1 The examined foundation A with a neighboring foundation B

The presence of neighboring loads will cause additional settlements Sip at nodal points of the
existing foundation. The additional settlement Sip at the nodal point i is given by:

r=m

Si.D = Zci,nﬂ Qn+r (31)

r=n+l1

where:

Ci,n+r Flexibility coefficient of the node i due to a unit load at node n+r [m/kN]
Qn+r Contact force at node n+r [kN]

r Node No. in the neighboring foundation B

Due to neighboring foundation, the total settlement on the foundation A can be expressed in
matrix form as:

{s)=1s,)+1s5) (32)

or

s)=lc]{Qi+[eo J{Qo (3.3)

3-3
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where:

{s}  Vector of the total settlement of the examined foundation A

{So}  Vector of the settlement due to stress of the examined foundation A

{so}  Vector of the additional settlement due to stress of neighboring foundation B
{Qb} Vector of contact forces for the examined foundation A

[c] Flexibility matrix of the soil for the examined foundation A

[co]  Flexibility matrix of the soil due to the neighboring foundation B

{Qp} Vector of contact forces due to the neighboring foundation B

Through inversion of the matrix [C], the following equation will be given:

Qi =lkJisi+[k.Jiso} (34)

or

Q) =k Jisj+ [k, Jleo Qo | 35)

Then, the system equation of the examined foundation A due to influence of neighboring
foundation B in matrix form is:

[k, J+ 1] o) =P+ Ik Jleo Qo (3.6)

where:

[kp]  Plate stiffness matrix of the examined foundation A

[Ks] Soil stiffness matrix for the examined foundation A

{6}  Vector of nodal displacements of the examined foundation A
{P}  Vector of applied loads on the examined foundation A

3.3 Influence of buried structures
Buried structures such as tunnels and culverts cause lowering of the ground. If a foundation
exists above such structures, it will be affected by an additional settlement Siv at the node i due

to vertical displacement through the influence of buried structures.

Then, the total additional settlement Sia at the node i of the foundation due to external influences
1s:

Sia=Siv tSip (3.7)
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Example 3.1: Settlement outside the foundation

1 Description of the problem

Besides the possibility of studying the influence of neighboring structures on the foundation by
the program ELPLA, the described algorithm of ELPLA can be used also for the calculation of
settlements outside the foundation. This can be carried out through one of the following two

ways:

1) Using a net for the foundation and the unloaded areas outside the foundation. Then, the
rigidity of the unloaded areas can be eliminated by assuming very small thickness.

i) Using two independently nets one for the foundation and the other for the unloaded areas
outside the foundation as considered in this example.

Figure (3.2) shows an irregular raft has the contact area (I) with opening inside it. It is required
to determine the settlements at the area (II) around the raft and at the opening of area (III).

2 Soil properties

The raft of contact area (I) and the outside areas (II) and (III) are on regular subsoil. The soil is
supposed to have the following parameters:

Modulus of compressibility Es = 9500 [kN/m?]
Poisson’s ratio vs =0.0 [-]

The displacement of the soil is considered only in the vertical direction. Therefore, Poisson’s
ratio for the soil is assumed zero.

3 Raft material and thickness
The raft material and thickness are supposed to have the following parameters:

Young’s modulus Eo=2x10" [kN/m?]

Poisson’s ratio vb=0.25 [-]
Unit weight b =0 [kN/m’]
Raft thickness d=0.7 [m].

Unit weight of the raft material is assumed zero to neglect its own weight in the analysis.
4 Loads

The raft carries 12 concentrated loads as shown in Figure (3.2).

5 Mathematical model

The influence of surrounding structures and external loads can be taken into consideration only
for the Continuum model (methods 4, 5, 6, 7 and 8). The Continuum model based on, the
settlement at any node is affected by the contact forces at all the other nodes. In this example,
the Isotropic elastic half-space soil medium (method 5) is chosen to analysis the raft (I) and
3-5
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outside areas (II) and (III).
6 Analysis

To carry out the analysis, the raft (I) and the outside areas (II) and (III) are subdivided into two
independent element nets as shown in Figure 3.2b. Two independent names define the data of
the raft and the outside areas are chosen. The origin coordinates of the raft are (Xo, Yo) = (8.0,
8.0), while for the outside areas are (0.0, 0.0).

The analysis of the raft (I) is carried out to obtain the contact pressures under it first. Due to
these contact pressures, settlements will occur not only under the raft (I) but also outside under
areas (II) and (IIT). Then, the settlements of the outside areas (II) and (III) are determined.

7 Results

Figure 3.3 shows the contact pressures under the raft (I) that cause the settlements under it and
also at the outside areas (II) and (III). Figure 3.4 shows the contour lines of the settlements under
the raft.

Figure 3.5a shows the settlement at the middle section S-S of the outside areas (II) and (III),
while Figure 3.5b shows the contour lines of the settlements. As it is expected, the greatest
values of settlements are near the raft.
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Figure 3.3 Contact pressures [kN/m?] under the raft

Figure 3.4 Contour lines of settlements [cm] under the raft
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Example 3.2: Influence of a new neighboring building Il on an old one |
1 Description of the problem

For the explanation of the influence of a neighboring building, the influence of a new building
on an existing old one is examined in this example.

Figure 3.6 shows plan and section of new building II beside similar old one I. The building I was
constructed since long time, while the building II will be constructed close to the first one. The
two buildings have the same construction geometry and loads. Also, every building is
symmetrical about both x- and y-axes.

2 Soil properties

The subsoil under the buildings consists of a layer of stiff plastic clay with 5.70 [m] thick,
overlying a rigid base (Figure 3.6a). The soil is supposed to have the following parameters:

Modulus of compressibility for loading Es =5000 [KN/m?]
Modulus of compressibility for reloading W5 =15000 [kN/m?]
Unit weight vs =18 [KN/m’]
Poisson’s ratio Vs =0.0 [-]

The displacement of the soil is considered only in the vertical direction. Therefore, Poisson’s
ratio for the clay is assumed zero.

3 Foundation material and thickness

The foundation material and thickness are supposed to have the following parameters:

Young’s modulus Eb =2x107 [kN/m?]
Poisson’s ratio Vb =0.25 [-]

Unit weight b =0.0 [KN/m’]
Foundation thickness d =1.0 [m]

Eigengewicht des Betons wird vernachléssigt

Unit weight of the foundation material is assumed zero to neglect its own weight in the analysis.
4 Mathematical model

The influence of surrounding structures and external loads can be taken into consideration only
for the Continuum model (methods 4 to 9). The Continuum model based on, the settlement at
any node is affected by the forces at all the other nodes. In this example, the Modulus of
compressibility method (method 7) is chosen to analysis both of the two buildings.

5 Analysis

To analysis the foundations, each foundation is subdivided into elements with 189 nodes as
shown in Figure 3.6b. Two independent names define the data of the two buildings are chosen.

The data are quite similar for the two buildings except the origin coordinates, which are chosen

3-10
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to be (Xo, Yo) = (10.28, 0.0) and (0.0, 0.0) for buildings I and II, respectively. In spite of the two
buildings are closed to each other, a small distance of 20 [cm] is assumed between them to avoid
overlapping their nodes.

The analysis of the new building II is carried out first to obtain the contact pressures under it.
Due to these contact pressures, settlements will occur not only under the building II but also
outside under the building I. Then, under the assumption that left beside the old building a new
building will be constructed, the contact pressures, settlements and internal forces of the old
building are determined.

6 Results and evaluation

Figure 3.7a shows the contact pressure distribution that was originally available under the old
building. As it is expected, the contact pressures are distributed symmetrically, because the
building was analyzed under the assumption that the loads are symmetrically applied.

Figure 3.7b on the right shows the changes in contact pressures under the old building, while the
opposite figure on the left shows the contact pressures under the new building. It is through
comparison to recognize that considerable differences occur in the contact pressure distribution
under the old building. The contact pressures became smaller at the edge between new building
and old building due to the additional settlements from the influence of the neighboring
building. From equilibrium of the vertical forces, the contact pressures became larger in the
middle of the old building. Of course, the change in contact pressure distribution under the
building will cause also changing and shifting the stress of the old building. Accordingly, the
moments of the old building will be affected.

Figure 3.8a shows the settlements as contour lines under the old building I without the influence
of the neighboring building. Because there is a centrical resultant load, the settlements are
symmetrical.

Figure 3.8b on the right shows the settlements of the old building I and on the left the
settlements of the new building II. As it is expected, the old building settled additionally at the
edge to the new building. Consequently, the settlements are regressive on the right side of the
old building. This means a tilt of the old building occurs.

Figure 3.9 shows the settlements s, contact pressures  and moments mx at the middle of the
foundations for both buildings I and II.

From the results, it is recognized furthermore, that the settlements at the edge nodes of the old
building near to the new building increase strongly (Figure 3.9a). Therefore, the settlement
increased from 4.79 [cm] to 7.31 [cm] at the middle of the foundation.

The influence of the neighboring building is very clearly noticeable in curves of the Figure 3.9c.
Due to the greatest positive moment (column moment with load P = 2000 [kN]), which is
increased from 787 [kNm/m] (only new building) to 654 [kNm/m], the sign of the field moment
is changed. The field moment (only new building) reaches 20 [kNm/m], while with the influence
of a neighboring building at the same node the field moment reaches -200 [kNm/m)].

By these results can now estimate the addition stress on the old building due to the influence of
3-11
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the new building and consequently prevent damages of the old building.
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Example 3.3: Influence of ground lowering on a building due to a tunnel
1 Description of the problem

Figure 3.10 shows a raft of a building consists of two rectangular parts, which are completely
connected. The raft is 50 [cm] thick and has a foundation depth of 2.50 [m] under the ground
surface. It is planned to construct a tunnel diagonally to the building axis. A primary estimation
expects that the tunnel will cause a settlement trough of about 9 [m] width with a maximum
lowering of 3 [cm] for the building ground. The settlement trough is plotted in Figure 3.10 as
contour lines, running symmetrically to the tunnel axis. The influence of the settlement trough
due to construction of the tunnel is considered in the analysis of the raft. The raft carries two
equal column loads, each of P = 18000 [kN] and line loads of p = 300 [kN/m] from edge walls.
The edge walls have 0.30 [m] breadth and 3 [m] height.

2 Soil properties
The subsoil under the raft is defined by 3 boring logs B1 to B3 up to 14 [m] under the ground

surface. The subsoil consists of two soil layers of clay and sandstone, which are not horizontally
stratified as shown in Figure 3.10 and Table 3.1. Poisson’s ratio for the soil is vs = 0.3 [-].

Tabelle 3.1  Bodenkennwerte
Depth of Modulus of compressibility of the Unit
layer soil for :
Layer Type of | underground \Xlileg?(ti(l)f
No. soil surface Loading Reloading "
z Es [kN/m?] Ws [kN/m?] [kN/m’]
[m]
1 Clay 5.5/6.3/7.0 10000 30000 18
2 Sandstone 14 160000 400000 21
3 Raft material and properties

The raft material is reinforced concrete and has the following properties:

Young’s modulus Ep=3 x 10’ [kN/m?]
Shear modulus Gb=1.25 x 10’ [KN/m?]
Poisson’s ratio vb=0.2 [-]

Unit weight Yo =25 [KN/m?]

The rigidity of the edge walls (0.30 [m] breadth and 3 [m] height) is simulated through beam
elements along the raft edge with the following data:

=0.675
=0.0253

[m*]

[m”]

Moment of inertia |
Torsional inertia J



Theory for the calculation of shallow foundations
Chapter 3 Neighboring Foundations and Buried Structures

4 Analysis of the raft

The raft is subdivided into 112 square finite elements. Each element has a side of 1.5 [m] as
shown in Figure 3.10. The analysis of the raft is carried out by the modulus of compressibility
method (method 7). To consider the irregularity of subsoil under the raft, the flexibility
coefficients are determined through bilinear interpolation. To examine the influence of the
tunnel on the raft, the analysis of the raft is carried out first without consideration of the tunnel.
Then, with consideration of the estimated settlements due to presence of the tunnel.

5 Results and discussion

The results of the settlements, contact pressures and moments are presented in Figures 3.11 to
3.13. It can be concluded from the figures that:

- The contact pressure under the columns become higher, while that at the field between
columns become smaller.

- Due to the effect of the tunnel, the settlement under the raft at area above the tunnel will
increase while the contact pressure will decrease. The change in the moment at this area
is also remarkable.

- Moment become higher under the column, while that in the fields between columns
become smaller. However, overall the change in the moment in this example is not great.
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In many practical cases, it becomes important to study the interaction of elastic or rigid
foundations, which are constructed simultaneously. In this case, there will be interaction of
foundations due to the overlapping of stresses through the soil medium, however the structures
are not statically connected. The interaction of foundations will cause additional settlements
under all foundations.

The conventional solution of this problem assumes that the contact pressure of the foundation is
known and distributed linearly on the bottom of it. Accordingly, the soil settlements due to the
system of foundations can be easily determined.

This assumption may be correct for small foundations, but for big foundations, it is preferred to
analysis the foundation as a plate resting on either elastic springs (Winkler’s model) or
continuum model. In spite of the simplicity of the first model in application, one cannot consider
the effect of neighboring foundations or the influence of additional exterior loads. Thus, because
Winkler’s model is based on the contact pressure at any point on the bottom of the foundation is
proportional to the deflection at that point, independent of the deflections at the other points.
Representation of soil as Continuum model (methodes 4, 5, 6, 7 and 8) enables one to consider
the effect of external loads.

The study of interaction between a foundation and another neighboring foundation or an external
load has been considered by several authors. Stark (1990) presented an example for the
interaction between two rafts. Kany (1972) presented an analysis of a system of rigid
foundations. In addition, he presented a solution of system of foundations considering the
rigidity of the superstructure using a direct method (Kany 1977). Recently, Kany/ El Gendy
(1997) and (1999) presented an analysis of system of elastic or rigid foundations on irregular
subsoil model using an iterative procedure.

This section presents a general solution for the analysis of system of foundations, elastic or rigid,
using the iterative procedure of Kany/ El Gendy (1997) and (1999).

4.2 Definition of system of foundations

To describe the analysis of system of slab foundations, consider the example system of slabs
shown in Figure 4.1. The system consists of three different slabs I, I and III. It is supposed to be
constructed separately simultaneously. The three slabs are divided into square elements having
= r1 + ru + rm nodes. The node numbering and loads are defined in the global system of
coordinate x-y as shown in Figure 4.1. The contact pressure ¢g; at a node i is replaced by
equivalent contact force Qi. There are additional two external foundations IV and V constructed
after the system of the three slabs is carried out. Those two external foundations will provide an
additional settlement s;.4 at a node i.
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Slab II

X

Figure 4.1 Plan of a system from three slabs (I to III) and two external foundations IV and V

4.3  Summation equation of settlement

For the set of grid points of the three slabs, the settlement s; at a point i is defined by series of
unknown contact pressures Ok as shown in Equation 4.1.

k=r

S; = (Ci,k Qk)+Si.A 4.1)

k=1

Where
Ci k Flexibility coefficient of the node i due to a unit load at node £
Si.A Additional settlement at that node due to external influences (foundations IV and V)

4.4  Assembling the flexibility matrix

The analysis of an isolated foundation on three-dimensional subsoil model, which were
presented by Kany/ El Gendy (1995), may be used also here for the analysis of system of
foundations.

Assembling the total flexibility matrix for the system of slabs in Figure 4.1, which has total
number of 7 = 145 nodes, requires to do 7> = 21025 settlement calculations through Equation 4.1

(without external foundations IV and V).

Equation 4.1 can be rewritten in matrix form as:
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{S }1 [c] L1 [c] LI [c] LI {Q}I {S 4 }1
{S}II = [C] L1 [C] L1 [C] 0L, 11 {Q}u + {SA }11 (4.2)
{S }III [C] 1 [C] 1,11 [c] 1, 1 {Q }111 {S 4 }III

where

{s}1  Settlement vector of the slab I.

[c]1s Flexibility matrix of the slab I due to contact pressure of slab J.

{O}1 Contact force vector of the slab I.

{s4}1 Additional settlement vector of the slab I due to external influences
(foundations IV and V).

Inverting the total flexibility matrix gives the total soil stiffness matrix as:

{Q}I [C] L1 [c] LI [C] LI ) {S }1 {S 4 }1
{Q}II = [C] 1,1 [C ] 1,1 [C] 1L, 11 {S }11 - {S 4 }11 (4.3)
{Q}m [C] 1,1 [c] 1,11 [C] 1, 1 {S }III {S 4 }111

4.5  Analysis of system of elastic foundations
45.1 Assembling the system of linear equations
For big foundations, the foundation is treated as a plate on elastic medium. From the finite

element analysis of the plate, the equilibrium of foundation I is expressed by the following
matrix equation:

[k,], 5}, =P} {0}, (4.4)

In the same manner for foundation II:

[kp]u {8}11 = {P}II - {Q}u (4.5)
and for foundation III:

[kp]m {8}111 = {P}III - {Q}m (4.6)
where
{p}1, {p}uund {p}m External force vectors of slabs I, IT and I1I
{8}1, {o}nund {J}m Deformation vectors of slabs I, IT and 11
[kp]1, [kp]iund [kp]m Plate stiffness matrix of slabs I, II and III

Equations 4.4, 4.5 and 4.6 are rewritten in matrix form as:
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&), ][] (@] (tPh) (o)
(o] [&,], o] [{ih=1(Ph(-1i0h (4.7

[ 0] [O] [K p ]111 {5}111 {P }111 {Q}III

Substituting Equation 4.3 into Equation 4.7 gives the following linear system equations in
matrix form as:

k), ] [o] (k) [P}
[O] [Kp]n [O] {8}11 = {P}n -
[o] [ ], Uk ({Ph

[C] L1 [C] LI [C] LI ’ {S }1 {S 4 }I
[c] 11 [c] 1,11 [c] 1,111 {S }11 - {S 4 }11
[C] 1L 1 [C] L 11 [C] L 111 {S }111 S4 }m

Considering the compatibility of deformations between the slab and the soil medium, where the
soil settlement s is equal to the slab deflection w, Equation 4.8 becomes:

[Kp ]1 [O] [O] [C] LI [C] LIl [C] I ! {6}1
[ O] [K » ] - [0] [C] 1L1 [C] L1 [C] 1L 111 {6}11 = {P }11 +
[ O] [O] [Kp ] I [C] 1,1 [C] 1,11 [C] 111 {5}111 {P}m

[C] L1 [C] L [C] L ! {S 4 }1
[C] 1 [C] LI [C] L 11 {SA }11
[C] 10,1 [C] L1t [C] 1L, 11 {S 4 }III

The above system of linear equations can be solved by Gauss elimination method or by iterative
procedure according to Kany/ El Gendy (1997).

(4.8)

4.6  Analysis of system of rigid foundations
4.6.1 Assembling the system of linear equations

The settlement s: of the slab I at a node i due to slab rigidity is expressed by the following linear
relation (plane translation):

s;=w,; +x tanf , +y, tanb , (4.10)

where

wos  Rigid body translation of the slab I at the slab centroid
0xz  Rigid body rotation of the slab I about x-axis

0y,  Rigid body rotation of the slab I about y-axis
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Equation 4.10 for the slab I can be rewritten in matrix form:

fsh=lxT o) (4.11)
where
{A}1 Vector of translation w1 and rotations tan 6y1 and tan 0«1 of the slab I

[X]%1  Vector of coordinate x and y of the slab I, [X]T1 =1, x, y]

In the same manner for foundation II:

Ishe =[xTn ik (4.12)
and for foundation III:

st =[x {A}, (4.13)

Equations 4.11, 4.12 and 4.13 are rewritten in matrix form:

tsh] (xI'v [o]  [o] |[{a},
{S}II = [O] [X]T“ [0] {A}II (4.14)
{S }lll [O] [0] [X ]T 1 {A }111

46.1.1 Equilibrium of the vertical forces

For each of the three slabs, the resultant N: due to external vertical forces acting on the slabs
must be equal to the sum of contact forces, where:

N = 0 + 0 + 0O + + er
Ny =0, + 0. + 0.  + ..+ 0 (4.15)
NIH = Q i + Q” 2 + Q"11+3 T F Q"m

46.1.2 Equilibrium of the moments

For each of the three slabs, the moment due to resultant N; about the y-axis must be equal to the
sum of moments due to contact pressure forces about that axis, where:

Nyxy = 0Ox + O0x, + Ox + + 0 x
NH xNII = Qrm x”m + Q”Hz xmz + Q”1+3 x”1+3 + Q”u x"u (416)
Nl“ leu - Q”11+1 Uin + Q’mz x’u+2 + Q’IM x’u+3 + Q’m x’m

The equilibrium equations for moments about the x-axis are given by:
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Nyyy, = 0y, + O + O + .t Qr[ Y
NH yNIl - Q”m y”m + Q”Hz y"nz + Q”Hs y”[+3 ot Q”Il y"ll (417)
NIH me - Q”lm y”lm + Q’mz y”mz + Q’Im yrIH} ot Q”m y’m

Equations 4.15, 4.16 and 4.17 are rewritten in matrix form as:

Wh] [lx] fol o] ][ {oh
Whip=[ o] [x], [o] |{{o) (4.18)
{N}lll [O] [O] [X] I {Q}III

Substituting Equation 4.18 and 4.14 into Equation 4.3, gives the following linear system of
equations in matrix form:

v
{N}II
{N}lll

[X ] I [O] [O] [c ] L1 [c ] LI [c ] LI ) [X ]Tl [O] [0] {A}I
[O] [X] I [O] [c] L1 [c] LI [c] I, 111 [O] [X]TH [O] {A}u (4.19)
[0] [O] [X ] m [c ] L1 [C ] 1,1 [C ] 0L, 111 [O] [O] [X ]TUI {A}III

[X]I [0] [0] [C]I,I [C]I,II [C]I,III ) {SA}I
- {0} [X]u [O] [c]ll,l [C]H,u [C]H,m {SA}II

0 [0] [X ]III [C]III,I [C]III,II [C]III,III {SA}III

The above system of linear equations 4.19 can be solved by Gauss elimination method or by
iterative procedure according to Kany/ El Gendy (1999).

Through solving the system of linear equations 4.19, get wo., tan Ox1, tan 6,.1, wo, tan Oy, tan
0y.11, wor, tan Oxim and tan 0y.an. Substituting these values in Equation 4.14, then Substituting

Equation 4.14 in 4.3, get the following matrix equation to find the n unknown contact pressure
forces Q1 to Or.

{Q}I [c] L1 [c] LI [c] LI ! [X]TI [0] [O] {A}l
{Q}u = [C] 1,1 [C] 1,11 [C] 1,111 [O] [X ]T“ [0] {A}u
{Q}Ill [C] 1,1 [C] L, 11 [C] L, 111 [O] [0] [X ]T[” {A}III

[C]l,l [C]l,ll [C]I,III ! {SA}I
- [C]II,I [C]II,II [C]II,III {SA }11

[c]lll,l [c]lll,ll [c]m,m Sy }111

(4.20)

Substituting also the values wo, tan 0x and tan 6, in Equation 4.14, one can get the n settlements
s1to s
4.7 Iterative procedure
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The major difficulty for practical problems to study a system of foundations lies in solving large
set of equations, which requires large computer storage and long computation time.

There are many iteration methods for the analysis of an isolated foundation in case of elastic
foundation presented by Haung (1974), Ahrens/ Winselmann (1984), Stark (1990) and El Gendy
(1994). Those methods may be used here.

In the program ELPLA, an iteration method is developed to solve the system of linear equations
for system of both elastic and rigid foundations.

The main idea of this method is that each foundation set of equations is solved alone and the soil
stiffness matrix will be converted to equivalent symmetrical banded matrix in case of elastic
foundations. This matrix is then simply added to that of the plate. As the plate stiffness matrix is
also a banded matrix, the overall matrix can be solved by using the banded coefficients
technique.

A good advantage of this iteration method is that it requires much less computer memory than
the elimination method or iteration methods, which treat the total system equations of the
foundations as one unit.
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Figure 4.2 shows the iteration cycle and the flow chart of the iteration process.
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Example 4.1: Interaction of two circular rafts
1 Description of the problem

To illustrate the application of the iterative procedure of Kany/ El Gendy (1997) for the
interactive system of foundations, consider the system of two equal large circular rafts shown in
Figure 4.3. The rafts rest on a soil layer of thickness 15 m. Each raft has a diameter of 22 [m]
and 0.65 [m] thickness. Loading on each raft consists of 24 column loads in which 16 columns
loads have P1 = 1250 [kN] and 8 column loads have P> = 1000 [kN]. The Young’s modulus of
the raft material is E» = 2.6x107 [kN/m?] and Poisson’s ratio is v» = 0.15 [-], while the soil
values are Es = 9500 [kN/m?] and vs = 0.0 [-].

y ++-F Raft [ i e e Raft II
ISR gissEE=s
s le: - A Pk
mTmrTTTT T T T T+t Tt
Tttt + Tttt ﬁﬁ‘ff‘l‘l“l“l‘fﬁ_
THHH-+ gt ® gt +H H gt -lgh+H
, [t P+ H HHH - p H -
S HIMHRR P SRR SR HBHIBR S SRR
LI L b e r 1 [ N RN
T H‘*“l‘."“" |‘.‘|‘T1‘I‘|||||| I T T T@l T ~igl T 1T TTTITT
HH H- 11+ 1+ & -+ + 1ty ettt + 1+ @ —F + 1+ 1+t
H+ 4+ =+ o+ -+
TTI%:ETT TTI%:ETT’
® p;=1250 [kN

[
=

® P»=1000 [kN

Figure 4.3 System of two circular rafts

2 Analysis

The analysis of the two rafts is carried out for two cases:

1) without interaction between rafts.

1) with interaction where the two rafts are constructed simultaneously.

Each raft is divided into 404 elements yielding 914 and 457 nodal points, for the calculations
based on system of two rafts and the isolated raft, respectively. This generates 2742 and 1371
simultaneous equations for the two calculation cases, respectively.

To analysis the rafts as system of foundations, Data of the two rafts are put in two separate files
(Files hal and ha2). Besides, A third file contains information about the system of foundations

(File h12). Data of the two rafts are quite similar except the origin coordinates, which are chosen
(X0, ¥0) = (0.0, 0.0) and (22.5, 0.0) for rafts (I) and (II) respectively.

The maximum difference between the soil settlement s [cm] and the raft deflection w [cm] is
4-10
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considered as an accuracy number. In this example, the accuracy is chosen 0.01 cm. The results
are obtained by using the iterative procedure of Kany/ El Gendy (1997) after only four cycles for
both cases with and without interaction (only isolated raft).

To show the speed of convergence of the iterative procedure of Kany/ El Gendy (1997), a
comparison of it with modification of subgrade reaction by iteration method (Ahrens/
Winselmann (1984)) and that of El Gendy (1994) is carried out. The accuracy of computation is
plotted against the iterative cycle number in Figure 4.4, for the three iteration methods where the
analysis is carried out for an isolated raft. Figure 4.4 shows that the iterative procedure of Kany/
El Gendy (1997) converges more rapidly.

Iterative cycle number

0.0 4

et
| _|,,|_.J—--|"|'|T|T_| | |
. I S T | : | : | : | : | :
i L | | | | I | | | | | | | |
_os pfip by b b b Lo Lo Lo g
& f | I/r‘l | I i I D I i I i I | I i I |
oy bbb
s | S I N B N
T A
ll('l | I | I Iteration method (Kany/ El Gendy 1997)
15 r’_|_+|_:_4 -------------- Iteration method (El Gendy 1994)
- | | l | | ————- Modification of subgrade reaction by
| | | | | Iteration (4hrens/ Winselmann (1984))
| | |
20 Lo 1 & | &= - — - - - —

Figure 4.4 The accuracy against the iterative cycle number for the three iteration methods

3 Results and evaluation

Figure 4.5 on the left shows the contour lines of settlements under the raft (I) without interaction
of two rafts. As it is expected, the settlements are distributed symmetrically, because the raft was
analyzed under the assumption that the loads are symmetrically applied. Figure 4.5 on the right
shows the contour lines of settlements under the raft (IT) considering the interaction of two rafts.
It 1s recognized through comparison that considerable differences occurred in settlements under
the raft (II). The settlements of the raft (II) became greater at the edge between two rafts.

Figure 4.6 shows the settlements s, contact pressures ¢ and moments m. at the middle of the raft

(IT) for both two cases with and without interaction.

From the results, it is recognized furthermore, that the settlements of the edge nodes of the raft

4-11
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(IT) near the raft (I) increase strongly (Figure 4.6a). Therefore, the settlement increased from
5.12 [cm] to 7.75 [cm] at the middle of the raft.

Figure (4.6b) shows that the contact pressure at the edge of the raft (II) near the raft (I)
decreased from 70 [kN/m?] to 240 [kN/m?]. The contact pressures became smaller at the edge
between two rafts due to the additional settlements from the interaction of them. From
equilibrium of the vertical forces, the contact pressures became larger at the middle of the raft.
Naturally, the change in contact pressure distribution under the raft will cause also changing and
shifting in the stress of the raft. Accordingly, the moments of the raft will be affected.

The interaction of the two rafts is clearly noticeable in moments mx (Figure 4.6c). The field
moment my near the raft (I) decreased from 87 [kN.m/m] to 7 [kN.m/m] while the field moment
at the center of the raft decreased from 437 [kN.m/m] to 370 [kN.m/m)].

Figure 4.5 Contour lines of settlements s [cm] under the raft (I)
without interaction and under the raft (II) without interaction of two rafts
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Settlements, contact pressures and moments at the middle of the raft (I)
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Example 4.2: Settlement behavior of four containers
1 Description of the problem

To verify the iterative procedure of Kany/ El Gendy (1997) and evaluate its accuracy for
interactive large system of rigid rafts, consider the example 2 in the User’s Guide of program
STAPLA (Kany (1976)). The computed settlements obtained from the iterative procedure are
compared with those of program STAPLA (Kany (1976)).

For a sewerage station, two isolated containers 4 and B were constructed simultaneously. Then,
lately to extend the station another two isolated containers C and D would be constructed at the
same area. Those two external C and D containers would provide an additional settlement on
containers 4 and B.

It 1s required to assess the tilting of each container and the settlement considering the interaction
between the containers through the subsoil at the end of construction. The tilting and settlement
of the containers are main factors for designing of the pipe connections.

4
1 3 3 o
o6
A B — 332.00 u. NN.
o 5 S \? GW 327.00 Sand + Gravel
2 n — Es =15 000 [KN/m?]
(@\]
Silt + Clay
1l - Es =15 000 [kN/m?]
0
C D F =263 [m’]
a) , 31.00 b p =352 [KN/m 2]

Figure 4.7 a) Location of containers to each other
b) Soil properties under the containers (STAPLA(Kany (1976)))
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Selected raft fields

/] AN yd AN

woff )

N | N L

50.0

30.01

20.01
—_ External

N R

/ \

10.01 + +

./ N

0.0 10.0 20.0 30.0 400 500 X[m]

Figure 4.8 Division of the four circular rafts together into 26 fields (STAPLA)
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Figure 4.9 Division of the four circular rafts together into 1828 nodes (ELPLA)
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2 Analysis

Due to the big rigidity of the concrete containers, the containers may be treated as full rigid
bodies. Therefore, the foundations are assumed rigid circular rafts. To assess the tilting of the
circular rafts by the Program STAPLA (Kany (1976)), the circular rafts were subdivided into a
coarse mesh of rectangular fields. The total number of the fields of the four circular rafts was 26
fields as shown in Figure 4.8. The analysis was carried out to represent the final stage of
construction (four containers). To reduce the computation time by the program STAPLA (Kany
(1976)), the advantage of symmetry of the system of rafts about the y-y axis was considered in
the analysis. In addition, equivalent square rafts were chosen instead of the two external circular
rafts that would be constructed lately (containers C and D in Figure 4.7).

By the iterative procedure of Kany/ El Gendy (1999), dividing the same system of rafts into
many elements is possible. In the example, the circular rafts were subdivided into a finer mesh
of rectangular elements. The total number of nodes was 1828 nodes for the four rafts as shown
in Figure 4.9.

3 Results and evaluation

To evaluate the iterative procedure, the results of settlements at five selected points as shown in
Figure 4.7 were compared in Table 4.1 with those obtained from the program STAPLA (Kany
(1976)). The results were considered for the final stage of construction (four containers).

It can be noticed from the comparison that there is relative difference between the results
obtained by the iterative procedure and those obtained by the program STAPLA (Kany (1976))
for the five selected points. Through this comparison, it can be recognized that, the settlements
at a coarse fine subdivision of the raft exceed those at a fine subdivision of the raft by 4.1% to
6.4%. On the other hand, subdividing the circular raft into many square elements could bitterly
represent its dimension. The analysis of system of rigid rafts shown in Figure 4.7 was carried out
by a personal computer (300 MHZ, 4.5 Gb capacity, Win 95). The iteration process needed
fewer than 2 Min. at accuracy 0.0012 cm after three cycles.

Table 4.1 Comparison between settlements s [cm] obtained by STAPLA (Kany (1976)) and

that by ELPLA
Settlement s [cm]
Point Relative difference [%]
STAPLA New calculation
1 14.51 13.74 5.6
2 14.91 14.17 52
3 15.31 14.61 4.8
4 14.44 13.57 6.4
5 15.38 14.78 4.1
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Example 4.3: Interaction of two rafts considering two additional footings
1 Description of the problem

Besides, the possibility of analysis of large foundation system with many elements by the
procedure of Kany/ El Gendy (1997), the mesh of the rigid foundation can be generated in
analog mode to the finite element mesh of the elastic foundation in one program. Comparing
results from analysis of system of rigid rafts with those of elastic or flexible rafts with the same
input data is possible. Subsequently the results of the three analyses are compared in an
example.

In this example, the settlements of structures due to interactive analysis of system of rigid,
elastic and flexible rafts are studied. This example is chosen from the reference Grafshoff/ Kany
(1997). System of two large rafts and additional two external footings are constructed near each
other. The dimensions are shown in Figures 4.10 to 1.12 and Table 4.3.

2 Soil properties
The soil has two layers with different materials as shown in Figure 4.10 and Table 4.2. Poisson’s

ratio is constant for both of the two soil layers and is taken vy = 0. The foundation level for the
system of rafts is 1.3 [m].

Table 4.2 Soil properties
Depth of Modulus of elasticity of the soil | ypit weight
layer for of the soil
Layer Type of underground under GV
No. soil surface Loading Reloading "
[Z ] Es [kKN/m?] W [kN/m?] [KN/m’]
m
1 Silt 4.7 9000 27000 20
2 Sand 15 100000 300000 -
3 Raft material and thickness

The raft material (concrete) and thickness were supposed to have the following properties:

Young’s modulus  Ep =2x10’ [KN/m?]
Poisson’s ratio Vb =0.25 [-]

Raft thickness d =0.5 [m]
Unit weight Yo =0.0 [kN/m’]

The Young’s modulus E», Poisson’s ratio vs and thickness of rafts d play for the analysis of
system of rigid rafts no role. The self weight of the raft is ignored. Therefore, unit weight of raft
material is chosen y» = 0.0 to neglect the own weight of the raft.
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Figure 4.10  Section 1-5 with layer profile, soil properties and node numbers
of superstructure Grafhoff/ Kany (1997)
Table 4.3 Dimensions of the rafts I and II and the footings III and IV
Length width Origin coordinates
Foundation A B
[m] [m] x [m] Y [m]
Raft I 15 8 -1.5 -0.5
Raft II 8 12 9.0 7.6
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Figure 4.11  Plan view for system of rafts I and II as well as the footings
IIT and IV. Subdivision of the rafts: 43 fields (Grafhoff] Kany (1997))
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Figure 4.12  Plan view for loads [kN] on the rafts I and II as well as
the footings III and I'V. Subdivision of the rafts: 489 nodes
(Calculation by ELPLA)

4 Analysis

For the space structure system shown in Figure 4.11, the settlements at all nodes on the rafts are
determined. The analysis of the two rafts I and II with external footings III and IV was carried
out at three different rigidities:

1. System of flexible rafts
2. System of elastic rafts
3. System of rigid rafts

With the same input data, the three analyses carried out to allow a comparison. To represent the
flexible foundations, the raft thickness is chosen d = 20 cm, while for elastic foundations the raft
thickness is 50 cm. For rigid foundations, defining the raft properties is not necessary because
the analysis treats the rafts as rigid bodies.
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5 Results and evaluation

Figures 4.13 to 4.15 show the settlements for the system of flexible, elastic, rigid rafts, while
Figure 4.16 shows in one diagram, to good comparison, the settlements of the three analyses at
section A-B. Through the comparison between the results of the analysis obtained by the
program ELPLA and those obtained by Grafshoff/ Kany (1997), it can be recognized that the
deformation and contact pressure considering superstructure rigidity are nearly similar to those
obtained by the analysis of rigid rafts.

From Tables 4.4 and 4.5 it can be seen that the superstructure rigidity has great influence on the
rafts.

The analysis of the system of rafts without interaction of foundations gives symmetrical
deformation for all rafts at three different rigidities, because the loads are applied symmetrical
on each raft.

It can be recognized from the results that the settlements at the edge of structure I close to the
neighboring structure II increase strongly. Therefore, the settlement of field 25 increases from
3.25 [cm] to 3.39 [cm] in case 1 (flexible raft), from 2.59 [cm] to 2.77 [cm] in case 2 (elastic
raft) and from 2.46 [cm] to 2.65 [cm] in case 3 (rigid raft). This means that design of the rafts
must consider the effect of neighboring foundations.

Jiv
s

Figure 4.13  Contour lines of settlements s [cm] by analyzing as system of flexible rafts
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Figure 4.14  Contour lines of settlements s [cm] by analyzing as system of elastic rafts
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Figure 4.15  Contour lines of settlements s [cm] by analyzing as system of rigid rafts
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Figure 4.16  Settlements s [cm] at section 4-B under the raft I (with neighboring influence of
the building II and the two footings III and IV)
Table 4.4 Comparison between the analysis by Grafhoff/ Kany (1997) and
ELPLA for settlements s [cm] under the raft I (without neighboring influence)
Grafshoffl Kany (1997) New analysis
Type of analysis
Point 21 Point 25 Point 21 Point 25
system of flexible rafts 3.65 3.65 3.25 3.25
system of elastic rafts 3.04 3.04 2.59 2.59
system of rigid rafts 2.78%* 2.78%* 2.46 2.46

* Calculated as elastic raft with the superstructure

Table 4.5 Comparison between the analysis by Grafshoff/ Kany (1997) and
ELPLA for settlements s [cm] under the raft I (with neighboring influence of the
building II and the two footing IIT and I'V)
Grafshoffl Kany (1997) New analysis
Type of analysis
Point 21 Point 25 Point 21 Point 25
system of flexible rafts 3.66 4.00 3.27 3.39
system of elastic rafts 3.03 3.51 2.62 2.77
system of rigid rafts 2.79% 3.16%* 2.50 2.65

* Calculated as elastic raft with the superstructure

Figure 4.13 shows that the analysis of flexible rafts leads to concentration of settlements on the
nodes close to the applied loads. In the other extreme analysis case of rigid rafts, Figure 4.15
shows a linear shape of contour lines for settlements due to the neighboring influence.
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The neighboring influence for the analysis of elastic rafts is also obvious in Figure 4.14. It can
be concluded also from Figures 4.13 to 4.15 that although all rafts are supposed to symmetrical
loading, the settlements are unsymmetrical. Unsymmetrical results are expected also for contact
pressures and internal forces due to the neighboring influence.
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Example 4.4 Interaction of two square rafts constructed side by side
1 Description of the problem

Settlement joints are usually used in the foundation when the intensity of loads on it differs
considerably from area to another. In such case, the foundation may be divided corresponding to
its load intensity to avoid cracks. Settlement joint is constructed by making a complete separated
joint in the foundation or a hinged joint. If the foundation has a separated joint, each part will
settle independently but it will be interaction between parts of the foundation through the
subsoil. In the other case of hinged joint, there will be transmission of shearing forces between
connection parts.

This example is carried out to examine the interaction of two rafts considering settlement joint.
Consider two equal square rafts I and II will be constructed side by side. Each raft has a side of
12 [m] and 0.5 [m] thickness. Raft I is subject to a uniform load of 400 [kN/m?], while raft II
carries a uniform load of 200 [kN/m?].

2 Soil properties

The rafts rest on a soil layer of thickness 10 [m], overlying a rigid base. The soil has the following
parameters:

Modulus of compressibility for loading E,=10000 [kN/m’]
Modulus of compressibility for reloading ~ Wy =30 000 [kN/m?]

Unit weight vs =18 [KN/m?]
Poisson’s ratio vs=0.3 [-]
3 Raft material

The raft material has the following parameters:
Young’s modulus ~ E»=2x 107 [kN/m?]

Unit weight vb =25 [KN/m’]
Poisson’s ratio vb=0.25 [-]

Four cases concerning the influence of neighboring structures are considered as follows:

Case 1: Rafts I and II are constructed side by side at the same time. This case is examined
for different distances ¢ between the two rafts (Figure 4.17), where ¢ = 0.0 [m],
0.01 [m], 0.1 [m], 1.0 [m] and 10 [m].

Case 2: Raft I is constructed at first, then later the raft II. This case is examined for
different distances ¢ between the two rafts (Figure 4.17), where ¢ = 0.0 [m], 0.01
[em], 0.1 [m], 1.0 [m] and 10 [m].

Case 3: Rather than rafts I and II, only one raft is constructed (Figure 4.18).

Case 4: Rafts I and II are connected by a hinged joint (Figure 4.19).
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4 Analysis

The rafts are subdivided into square finite elements, each element has a side of 1.5 [m] as shown
in Figures 4.17 to 4.19.

The analysis of rafts in case 1 can be carried out through one of the following two ways:

1) Iteration by using two independently nets one for the raft I and the other for the
second raft II.

i) Without iteration by using a net for the two rafts. The free distances between the
rafts are carried out by inserting appropriate two elements between rafts. Then,
the boundary nodes of these elements are eliminated as considered in this
example.

To carry out the analysis of rafts in case 2, two independent file names define the data of the two
rafts are chosen. The data are quite similar for the two rafts except the loads and the origin
coordinates. The origin coordinates are chosen (xo, o) = (0.0, 0.0) for raft I and (xo, yo) =
(12.0+¢, 0.0) for raft II. Raft II is analyzed first to obtain the contact pressures, then raft I to
consider the influence of neighboring raft II.

To simulate a hinged joint between rafts in case 4 two very small elements are inserted between
the rafts. Each element has 1 [cm] width and 5 [cm] thickness. The very small widths of the
elements keep the distance between the rafts nearly zero, while the small thickness of the
elements makes the raft rigidity at the joint very small. These boundary conditions allow
interacting only the vertical forces between rafts. Moments at hinged connection will be
eliminated due to the very small rigidity of connection elements.
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Figure 4.17 Rafts I and II are constructed side by side (cases 1 and 2)
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Figure 4.18  Rather than rafts I and II, only one raft is constructed (case 3)
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Figure 4.19  Rafts I and II are connected by a hinged joint (case 4)

5 Results and discussion

Figures 4.20 to 4.31 show the distribution of settlement, contact pressure, moment and shearing
force at middle section a-a for the four cases of analyses. Tables 4.6 and 4.7 show the joint width
¢ between the two rafts, settlements (s1, s2), contact pressures (g1, ¢2) at edges of the rafts (points
1 and 2) and the differences (As, Ag) for cases 1 and 2.
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Table 4.6 Settlements s1 and s2 at edges of rafts I and II and differences As

Toint width Rafts I and II are constructed side Raft I is constructed at first, then
om CWI by side at the same time (case 1) later the raft II (case 2)
[m] s1 52 As=s1-52 s1 52 As=s1-52
[cm] [cm] [cm] [cm] [cm] [cm]
0.00 15.05 14.71 0.34 17.87 6.35 11.52
0.01 15.12 14.54 0.58 17.08 6.35 10.73
0.10 15.30 13.70 1.60 17.24 6.35 10.89
1.00 14.73 10.29 4.44 15.29 6.35 8.94
10.0 13.00 6.16 6.84 12.99 6.35 6.64
o0 13.10 6.35 6.75 13.10 6.35 6.75

Table 4.7 Contact pressures g1 and g2 at edges of rafts I and II and differences Ag

Rafts I and II are constructed side Raft I is constructed at first, then
Joint width by side at the same time (case 1) later the raft II (case 2)

¢ qi q Ag=qi-q qi q Ag=q1-q
[m] [KN/m?] | [kN/m?2] | [kNm?] | [kN/m?] | [kN/m?] | [kN/m?]
0.00 669 -133 802 444 368 76
0.01 664 -119 783 529 368 161
0.10 644 -53 697 495 368 127
1.00 653 160 493 616 368 248
10.0 733 367 366 733 368 365

© 733 365 368 733 368 365

In general, it can be noticed from those figures that:
Timeout of the construction process:
- Considerable differences will be expected in the results, if the analysis is carried out for

system of rafts (case 1) or for construction of new raft Il beside an existing old one I
(case 2).

- If the two rafts are constructed side by side at the same time, both rafts will lean toward
each other (Figure 4.21).
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- If the raft I is constructed first and then the raft 11, there will be an additional pressure
under the raft [ will cause an inclination of the raft I in the direction of the raft II (Figure
4.25).

Settlement differences at the joint:

- For system of rafts (case 1), the settlement difference between rafts is relatively small at
the joint for joint width ¢ = 0.0 [cm]. The more settlement difference is for farther
distance between rafts. In contrast, for the raft I with neighboring raft Il (case 2) because
of the pressure overlap from the neighboring raft II, the greater settlement difference is
for the smaller joint width ¢ (Figures 4.21, 4.25 and Table 4.6). This phenomenon occurs
because the behavior of contact pressures of raft I has great influence on the
settlement distribution of the raft I. Figures 4.20 and 4.24 show the contact pressure
distribution for cases 1 and 2. The contact pressure of raft II for case 1 decrease by
decreasing the width joint ¢, while for case 2 is independence from joint width c.

- Settlements at the edge of the raft I due to influence of neighboring raft II (case 2) are
greater than those due to system of rafts (case 1).

- Settlements from case 1 for joint width ¢ = 0.0 [cm] and from cases 3 and 4 are quite
similar (Figures 4.21 and 4.29).

- If hinged joint between rafts is used (case 4), there will be continuation of settlement
under the rafts (Figure 4.29).

Contact pressures:

- For system of rafts (case 1) the contact pressure distribution under the raft I is almost
independent of the joint width due to the heavy load of the raft I. On the other hand, for
the raft II strong dependence on the joint width is to be found because the strong edge
contact pressure of the raft I, which affects on the raft II (Figure 4.23 and Table 4.7).

- Contact pressures at the edge of the raft I, if the raft I is constructed first and then the raft
IT (case 2), decreases by decreasing the width joint ¢ (Figure 4.25).

- Contact pressures from case 3 (rafts as one unit) and 4 (rafts with hinged joint) are nearly
similar (Figure 4.28).

Moments:

- For system of rafts (case 1) the maximum moments for the raft I decrease by decreasing
the joint width ¢, while for the raft II the sign of moment is changed from positive to
negative in some places. The greater negative moment for raft II is for the smaller joint
width ¢ (Figure 4.22).

- For case 2, if the raft I is constructed first and then the raft II, the maximum moments of
raft I decrease by decreasing the joint width c. The positions of maximum moments are
also shifted to the opposite direction of raft II (Figure 4.26).

- It is clear from Figure 4.30 for rafts connected with hinged joint (case 4) that, the
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moment at the hinged joint for the two rafts is zero. Figure 4.30 shows for case 3 that a
positive moment is to be found at the connection position. Raft II for both cases 3 and 4
has a negative moment beside a positive moment.

Shearing forces:

- The change in shearing forces for the raft I in case 1 is less than that in case 2 (Figures
4.23 and 4.27), while for the raft II in case 1 the singe of shearing force is changed from
negative to positive at the edge of the raft. The greater positive shearing force for raft 11

is for the smaller joint width ¢ (Figure 4.23).

- For both cases 3 and 4 a positive shearing force at the connection is to be found (Figure
4.31). Maximum shearing force is for hinged connection.
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Figure 420 Contact pressures g at the middle section of rafts I and II when they are
constructed at the same time
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Figure 4.21  Settlements s at the middle section of rafts I and II when they are constructed at
the same time
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Figure 4.22  Moment m;x at the middle section of rafts I and II when they are constructed at the
same time
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Figure 4.23  Shear forces Ox at the middle section of rafts I and II when they are constructed at
the same time
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Figure 4.24  Contact pressures g at the middle section of rafts I and II when raft I is
constructed at first, then later raft 11
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Settlements s at the middle section of rafts I and II when raft I is constructed at
first, then later raft 11
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Example 4.5 Analysis of a swimming pool
1 Description of the problem

A swimming pool is supposed to be constructed at a river. The existing ground around the pool
has to be increased up to a meter. The pool has dimensions of 25 [m] X 10 [m] and maximum
water depth of 1.20 [m] as shown in Figure 4.32. The foundation level is 1.45 [m] under the
ground surface. Slab and walls are reinforced concrete of concrete grade B 25 with thickness of
25 [cm)] for slab and 20 [cm] for walls. It is divided into two independent parts through a joint at
the pool middle.

The filling material around the pool is non-cohesive soil (Figures 4.33 and 4.34). The filling is
supposed to be carried out after finishing the pool.

In this example, it is required to study the following:

1) Influence of the joint on the settlements, contact pressures and internal forces of the pool
slab and the pool walls in case of the pool is completely filled by water.

i1) Influence of the ground rising by additional filling soil material at the southern part of
the  pool on the settlement.

2 Soil properties

The subsoil under the swimming pool is defined by five boring logs B1 to B5 up to 15 [m] under
the ground surface. The subsoil consists of four soil layers of fill, silt with organic admixture,
silt clayey and gravel, which are not horizontally stratified as shown in Figure 4.33 and Table
4.8. Poisson's ratio for the soil is vs = 0.3 [-]. Ground water level is 3.80 [m] under the ground
surface.
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Figure 4.32  Details of the swimming pool
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Figure 4.33  Boring logs B1 to BS with soil properties
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Table 4.8 Soil properties

Layer Typ(? of Mod.ul.u.s of Unit weight of the
No. soil compressibility of the .
. soil
soil for
. ) above under
Loading | Reloading GV G
Es Ws .
Vs Y s
1 Fill 70000 150000 19 10
2 Silt, organic admixture 4000 10000 17.5 7.5
3 Silt, clayey, soft 450 1000 16 6
4 Gravel 100000 200000 20 11
3 Raft material and properties

The material of the raft and walls is reinforced concrete of grade B 25. It has the following
properties:

Young’s modulus  E» =3 x10’ [KN/m?]
Shear modulus G, =13x10" [kN/m?]
Unit weight b =25 [KN/m?]
Poisson’s ratio Vb =0.25 [-]

4 Stiffness of edge walls

The rigidity of the edge walls (thickness B = 0.2 [m], height H = 1.2 [m]) is simulated through
beam elements along the raft edge with the following data:

H3
Moment of inertia [ =B x E
3
=0.2x 12 =0.0288 [m*]
12
4
Torsional inertia J =HxB’ x(l_o_mjﬁ 1— B .
3 H 12xH
4
=1.2x0.2° x(l—O.le% I—L4
3 1.2 12x1.2
=0.0286 [m*]
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5 Determination of settlements, contact pressures and internal forces
5.1  Studying the influence of the joint
Four cases concerning the influence of the joint are considered as follows:

Case 1:Analysis without interaction (Figure 4.34)
The two rafts are constructed side by side separately without interaction between them
through the soil.

Case 2:Analysis with interaction but without shearing forces (Figures 4.34).
The two rafts are constructed side by side separately with interaction only through the
soil. The distances ¢ between the two rafts is ¢=0.0 [m].

Case 3:Analysis with interaction and with shearing forces (Figure 4.36).
The two rafts are connected through hinged joint. The hinged joint is represented by
elements of 1 [cm] wide and 2 [cm] thickness.

Case 4: Analysis without joint (Figure 4.35)
Rather than two rafts, one raft is constructed.

5.2  Studying the influence of surrounding loading

To study the influence of the surrounding loading on the swimming pool due to the filling soil
material, the weight of the filling is represented by four loaded areas according to its weight
intensity as shown in Figure 4.38 and Table 4.9. The loaded areas are subdivided into four
independent nets. The analysis of these loaded areas is carried out firstly to obtain the contact
pressures under them. Due to these computed contact pressures, the settlement will occur under
the swimming pool. To simulate flexible foundations, the thicknesses of external foundations
(loaded areas) are chosen to be very small (5 [cm]).

Table 4.9 Properties of the loaded area

Loaded | Dimensions [m] Load Foundation Origin coordinate
area p=vh level
No. L B h [kN/m?] tr[m] x [m] Yy [m]
1 3 35 | 0.75 | 19x0.75=14.25 1.5 -3 -6
2 5 35 1.15 | 19%x1.15=21.85 1.15 -3 -3
3 8 5 0.40 19x0.40="17.6 04 27 2
4 8 5 0.40 19%x0.4=17.6 0.4 -3 2
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Figure 4.34  Rafts I and II are connected by a hinged joint (case 3)
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6 Analysis
6.1 General

The rafts are subdivided into 640 square finite elements, each element has a side of 0.625 [m] as
shown in Figures 4.34 to 4.36. The analysis of rafts in case 2 (analysis with interaction but
without shearing forces) is carried out by using a net for the two rafts. The free distances
between the rafts are carried out by inserting appropriate two elements between rafts. Then, the
boundary nodes of these elements are eliminated. After that the width of these two elements is
defined by @ = 0.0 [m].

To simulate a hinged joint between rafts in case 3 (analysis with interaction and with shearing
forces), two very small elements are inserted between the rafts. Each element has 1 [cm] width
and 2 [cm] thickness. The very small widths of the elements keep the distance between the rafts
nearly zero, while the small thickness of the elements makes the raft rigidity at the joint very
small. These boundary conditions allow interacting only the vertical forces between rafts.
Moments at hinged connection will be eliminated due to the very small rigidity of connection
elements. For all cases of analyses, the horizontal forces due to water pressure or earth pressure
are neglected.

6.2  Choice of the calculation method for studying the influence of the joint

A primary analysis was carried out by the modulus of compressibility method (method 7). It was
found that this method maybe causes numerical problems (These problems also occur when
applying the modulus of compressibility method using iteration (method 6)). The numerical
problems were due to the light loads distributed uniformly on the pool in addition to stiff edges
as a result to edge walls. Consequently, negative contact pressures occur by applying the
modulus of compressibility method. Therefore, all analysis of the pool were carried out by
Modification of modulus of subgrade reaction by iteration (method 4). The iteration process of
the method is repeated till the difference between the results of the step i and those of the step of
i +1 are nearly the same. In this example 20 steps were sufficient for the analysis.

6.3  Choice of the calculation method for studying
the influence of the surrounding loading

The loads from filling around the swimming pool (21.85 [kN/m?]) are higher than those acting
on the swimming pool itself (12 [kN/m?]). Therefore, it is expected great settlements on the
swimming pool due to the filling. In this case, negative contact pressures will be expected on the
swimming pool. Internal forces on the swimming pool and edge walls cannot be calculated due
to this extreme case. Here, only a settlement calculation is carried out to show the influence of
the surrounding loading due to filling using the modulus of compressibility method (method 7).

6.4  Consideration of the irregularity of the subsoil material
on the behavior of the swimming pool

The available information about the subsoil under the swimming pool is five boring logs B1 to BS5.
Each boring has four layers as shown in Figure 4.33 and Table 4.8. Arrangement of boring locations
are shown in Figure 4.37. In order to carry out the analysis of the swimming pool taking into
account the irregularity of the subsoil, the whole foundation area is subdivided into triangle zones as
shown in Figure 4.37. Then, the flexibility coefficients are determined by Interpolation method.

4-45
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7 Results and discussion
7.1  Studying the influence of the joint

Figures 4.39 to 4.50 show the contour lines of settlements, isometric view of contact pressures,

circular diagrams of moments for the four cases of analysis while Figure 4.51 shows settlements,

contact pressures and moments at the middle section a-a. Figures 4.52 to 4.59 show the internal

forces in the edge walls.

In general, it can be noticed from those figures that:

Settlements:

- Settlements at the edges (points 1 and 2) of the rafts with joints (cases 2 and 3) are
greater than that without interaction (case 1) and without joint (case 4), Figure

4.51a.

- Settlements for rafts with joints (cases 2 and 3) are nearly similar (Figures 4.40, 4.41 and
4.51a).

- If hinged joint between rafts is used (case 3), there will be continuation of settlement
under the rafts (Figure 4.51a).

- A continuation of settlement under the rafts with free joint (case 2) is also found, this
related to the loads on both rafts are equal (Figure 4.51a).

- The analysis of rafts with interaction showed that both rafts would lean toward each
other (Figures 4.40 and 4.41).

Contact pressures:

- If hinged joint between rafts is used (case 3), there will be continuation of contact
pressure under the rafts at the joint (Figures 4.45 and 4.51b).

- Slight differences in contact pressures at the edges (points 1 and 2) of the rafts with free
joint (case 2) occur (Figure 4.44).

Moments:

- Moments for rafts without interaction (case 1) and for the raft without joint (case 4) are
much greater than that for rafts with joints (cases 2 and 3), Figures 4.47 to 4.50 and
Figure 4.51c.

- For rafts with joints (cases 2 and 3), the positions of maximum moments are shifted to
the center of the rafts (Figure 4.51c¢).

- It is clear from Figure 4.51¢ for rafts with joints (cases 2 and 3) that, the moment at the
joints for the two rafts is tends to zero.
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Internal forces in walls:

Moments will be minimum if a raft with joint is used (cases 2 and 3), Figures 4.53 and
4.54. Moments and shear forces for rafts without interaction (case 1) is unreal (Figures
4.52 and 4.56).

For the raft without joint (case 4) a positive maximum moment at the position of
connection is to be found (Figures 4.55), while for rafts with joints the moments are
equal to zero at that position due to joints (Figures 4.53 and 4.54).

Moments and shear forces for the rafts with joints (cases 2 and 3) are nearly similar
(Figures 4.53, 4.54, 4.57 and 4.58).

Finally, it can be concluded that:

7.2

Considerable differences will be expected in the results, if the analysis is carried out for
rafts without and with interaction.

The results for the rafts with free joint (case 2) and with hinged joint (case 3) are nearly
similar in this example.

If rafts with free joint (case 2) have equal loads, only slight differences will be expected
at the position of joint connection. Therefore, both of the two types of joints (hinged or

free) may be used in this example.

Although the rafts with joints (cases 2 and 3) lead to higher settlements than that without
joints (case 4), but give less internal forces.

The suitable foundation system may be used in this example is the rafts with joints (case
2 or 3).

Studying the influence of surrounding loading

Figure 4.60 shows contour lines of the settlement under the swimming pool due to the
surrounding loading only. As it is expected, the settlement at the edge of the swimming pool
near the surrounding loading is about 2.5 [cm] greater than that due to the swimming pool itself
(Figures 4.39 to 4.42) by application of the four cases of analysis concerning the joint. Figures
4.61 to 4.64 show the contour lines of settlement under the swimming pool due to both loads
from filling and swimming pool itself. These figures show that the direction of the settlements is
changed toward the surrounding loading. To overcome extreme results concerning the internal
forces on the swimming pool in this case, it is recommended that most of the filling must be
carried out before constructing the swimming pool.
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Figure 4.39  Contour lines of settlements s [cm]
Analysis without interaction (case 1)
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Figure 4.40  Contour lines of settlements s [cm]
Analysis with interaction and without shearing forces (case 2)
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Figure 4.42  Contour lines of settlements s [cm]
Analysis without joint (case 4)
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Figure 4.46  Isometric view of contact pressures g [kN/m?]
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Figure 4.47  Circular diagrams of moments mx [kN.m/m]|
Analysis without interaction (case 1)
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Figure 4.48  Circular diagrams of moments 7 [kKN.m/m]
Analysis with interaction and without shearing forces (case 2)
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Figure 4.49  Circular diagrams of moments 7, [kKN.m/m]
Analysis with interaction and with shearing forces (case 3)

* 5[KN.m/m] e 10 [kN.m/m] ® 15 [kN.m/m] @ 20 [kN.m/m]

Figure 4.50  Circular diagrams of moments 7 [kKN.m/m]
Analysis without joint (case 4)
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Figure 4.52 Beam-bending moments M» [kN.m] at edge walls of the swimming pool
Analysis without interaction (case 1)

Figure 4.53  Beam-bending moments M» [kN.m] at edge walls of the swimming pool
Analysis with interaction and without shearing forces (case 2)
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Figure 4.54 Beam-bending moments M, [kN.m] at edge walls of the swimming pool
Analysis with interaction and with shearing forces (case 3)

Figure 4.55 Beam-bending moments M» [kN.m] at edge walls of the swimming pool
Analysis without joint (case 4)
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Figure 4.56  Beam-Shearing forces Qs [kN] at edge walls of the swimming pool
Analysis without interaction (case 1)

Figure 4.57 Beam-Shearing forces Qs [kN] at edge walls of the swimming pool
Analysis with interaction and without shearing forces (case 2)
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Figure 4.58  Beam-Shearing forces Qs [kN] at edge walls of the swimming pool
Analysis with interaction and with shearing forces (case 3)

Figure 4.59  Beam-Shearing forces Qs [kN] at edge walls of the swimming pool
Analysis without joint (case 4)
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Figure 4.60  Contour lines of settlements under the swimming pool
due to the filling around it.
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Analysis without interaction (case 1)
With influence of surrounding loading
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Analysis with interaction and without shearing forces (case 2)
With influence of surrounding loading
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Figure 4.63  Contour lines of settlements s [cm]

Analysis with interaction and with shearing forces (case 3)
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Analysis without joint (case 4)
With influence of surrounding loading
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5.1 Introduction
5.2 Determination of foundation rigidity
Example 5.1: Rigidity of simple square raft
Example 5.2: Rigidity of irregular raft on irregular subsoil
Example 5.3: Effect of girders on the raft rigidity
Example 5.4: Comparison between raft and grid foundations

5.1 Introduction
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The foundation is considered as rigid, elastic or flexible, depends on the ratio between the
rigidity of the foundation and the soil. The oldest work for the analysis of foundation rigidity is
that of Borowicka (1939). He analyzed the problem of distribution of contact stress under
uniformly loaded strip and circular rigid foundations resting on semi-infinite elastic mass. The
analysis showed that the distribution of contact stress, which is dependent on the relative
stiffness of the soil-foundation system, ks, is defined by

K, =l(1—v52J(Ej(g) (5.1
6(1-v,” J\E, J\b

where

Vb Poisson’s ratios for foundation material [-]

Vs Poisson’s ratios for soil [-]

Eb Young’s modulus of foundation materia [KN/m?]
Es Modulus of elasticity of the soil [kN/m?]
b Half-width for the strip foundation or radius for the circular foundation  [m]

d Thickness of foundation [m]

In which, ks = 0 indicates a perfectly flexible foundation, and ks = o means a perfectly rigid
foundation.

After Borowicka’s analysis, many authors introduced formulae to find the foundation rigidity for
plates resting on different subsoil models. For examples, Gorbunov/ Posadov (1959) introduced
formula for an elastic solid medium. Cheung/ Zienkiewicz (1965) introduced formulae for
Winkler springs and isotropic elastic half space model. Vlazov/ Leontiv (1966) introduced
formula for a two-parameter elastic medium. A good review for those formulaec may be found in
Selvadurai (1979).

Lately, based on great number of comparative computations for the modulus of compressibility
method, GraBhoff (1987) proposed various degrees of system rigidity between foundation and
the soil until case of practical rigidity using Equation 5.2. The equation still used in many
national standard specifications such as German standard (DIN 4018) and Egyptian Code of
Practice (ECP 196-1995).

E, (dY
K 3 ( I j (5.2)
wobei:
Eb Young’s modulus of the foundation material [kN/m?]
Es Modulus of elasticity of the soil [kN/m?]
d Foundation thickness [m]
I Foundation length [m]

In which, kst > 2 indicates very rigid foundation, kst < 0.005 indicates flexible foundation and
0.005 < kst > 2 indicates semi rigid foundation according to the Egyptian code of practice (ECP).

5-2
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While, kst = 1 indicates rigid foundation, kst = 0.1 indicates stiff foundation and kst = 0.01
indicates flexible foundation according to GraBhoff (1987).

It is noticed that, most of the available formulae used to determine the foundation rigidity
assuming that the footings or rafts having regular shape, supporting simple load geometry.
Besides the soil model is an isotropic elastic half space soil model or soil model of a
homogenous layer. This means that the practical application of those formulae is limited to
certain problems. Figure 5.1 shows some practical problems where the use of traditional
formulae may be not applicable for the analysis of foundation rigidity. Furthermore, the use of
traditional formulae may be not acceptable if nonlinear analysis of the soil is considered, or if
external influences such as the effect of tunneling, neighboring foundations are expected.

It is found that, the foundation rigidity depends on the depth of the soil layers and their elastic
properties, foundation geometry, foundation material, foundation thickness and the distribution
of loading.

Recently, ElI Gendy (1998) and (1999) proposed accurate analysis to find the foundation rigidity,
which can consider all the above factors. This analysis offers the possibility to find the rigidity
of rafts having any shape considering holes, re-enter corners, variable thickness with different
loading types and geometry and resting on irregular subsoil layers. The analysis deals with each
foundation as an independent problem, in which two solutions are carried out, full flexible and
full rigid, besides the elastic solution. Through those solutions, the system rigidity of foundation
for any practical problem on a real subsoil model can be obtained for high accuracy. This
analysis is described in the following section.

[ [

[ ]
a) Foundation on irregular subsoil b) Grid foundation or foundation with opening
) Foundation with variable thickness d) Ribbed foundation
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Figure 5.1 Some practical examples where traditional formulae may be not applicable

5.2 Determination of foundation rigidity

Today, The finite element method is the most powerful procedure. It can be applied to nearly all
engineering problems. In spite of the successful using of the finite element method in the
analysis of foundations, it may cause numerical problems during the solution of the system of
linear equations if the foundation is rigid enough. It can be drawn in this problem that, the
foundation (if it is sufficiently thick and without eccentricity about both axes) will be far stiffer
than the soil, so the displacements beneath the foundation will mostly be the same at all points.
Here, assuming the foundation is perfectly rigid is reasonable. Accordingly, the two solutions,
full flexible and full rigid, besides the elastic solution by finite element method are used to
estimate the foundation rigidity or the rigid thickness of the foundation.

5.2.1 Flexible solution
This solution represents a foundation has zero % degree of system rigidity. If the foundation is
perfectly flexible (such as an embankment), then the contact stress will be equal to the gravity
stress exerted by the foundation on the underlying soil.
For the set of grid points of the foundation, the soil settlements are given by:

{s=[cliQ} (5.3)
where:
{s}  Vector of soil settlements
[c] Flexibility matrix of the soil
{Q}  Vector of contact forces

5.2.2 Rigid solution

This solution represents a foundation has 100% degree of system rigidity. If the foundation is
completely rigid, two forms for foundation settlement are expected:

1) If foundation is subjected to a centric load, all points on the foundation will settle
the same value Wo.

i) If foundation is subjected to an eccentric load, the foundation will rotate as a rigid
body and will be differential vertical movement between points on the
foundation, but all points will remain in the same plane.

For a completely unsymmetrical external loading, the unknowns of the interaction problem are
the n contact pressures (i, the rigid body translation of the foundation wo and the rigid body
rotations Oxo and Oyo of the foundation about the axes of the geometry centroid. Considering the n
compatibility equations of rigid foundation translation and the settlement of subsoil at the n
nodal points and the three equations of overall equilibrium gives the following equation:

5-4
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INj=[x]lk X" {a} (5:4)
where:
{A}  Vector of rigid body displacement Wo and the rigid body rotations 0xo and 6yo of the
foundation.

[X]" Coordinate matrix.
{N}  Vector of the resultant forces and moments on the foundation
[ks]  Soil stiffness matrix

5.2.3 Elastic solution

This solution represents a foundation has degree of system rigidity between > 0% and <100%.
The elastic solution considers the compatibility of deformations between the foundation and the
soil medium. Here, the soil settlement S equals to the foundation deflection w. The stiffness
matrix of the whole foundation system is the sum of the foundation stiffness matrix [kp] and the
soil stiffness [Ks].

The following matrix equation expresses the equilibrium of the foundation-soil system:

[k, ]+ [k.]] 8} ={P} (5.5)

where:

{P}  Vector of the known applied loads and moments on the foundation

{6}  Nodal displacements vector of the foundation. Each nodal displacement constitutes the
foundation deflection w and the two rotations 0x and 6y about X and y-axes, respectively

5.2.4 Parameter k,

The main cofactor in Equations 5.3, 5.4 and 5.5 is the displacement w, which here equal to the
soil settlement S. Therefore, the definition of the rigid body movement is used to find the rigid
thickness of the foundation. In fact, if the foundation is completely rigid, it will rotate as rigid
body and it will be differential vertical movement between points on the foundation but all
points will remain in the same plane. Therefore, Equation 5.4 gives easily the plan of translation,
which can be defined only by three points. Consequently, the elastic settlements (=foundation
deformations) of any three points on the foundation can define the whole foundation form if
compared with those of rigid translations at the same three points.

The parameter kr [%)] at any three selected points at least on the foundation can be used to
represent the foundation rigidity. This parameter is a function of the elastic settlement S and the
rigid body translation w as given below:

K, =(1—ﬁ]x1oo (5.6)
W,

where:
Si Settlement at point i
Wi Rigid body translation at point i
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ASi Absolute difference between si and wi at that point i

The foundation may be considered practically rigid at a thickness (or system rigidity) gives kr
more than 90% for three selected points on it.
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Example 5.1 Rigidity of a simple square raft

1 Description of problem

For comparison with complex foundation rigidity problems, no solution is yet available.
Therefore, for judgment on the analysis of EI Gendy (1998) to find the system rigidity of
foundation, consider the simple example of raft foundation shown in Figure 5.2. The raft has
dimensions of 12 m % 12 m and carries four symmetrical and equal loads, each of P = 9000
[kN]. The raft rests on a homogenous soil layer of thickness 20 m. The Young’s modulus of the
raft and soil materials are Ep = 2x107 [kN/m?] and Es = 10000 [kN/m?], respectively. Poisson’s
ratio of the raft material is vo= 0.15.

Raft

P=9000 [kN]

Es =2x107 [kN/m?]
w=0.15 [-]

Compressible layer
Es = 10000 [kN/m?]

Figure 5.2 Raft dimensions, loads and subsoil

Deninger (1964) studied the same example using the finite difference method by dividing the
raft into 6x6 elements. Each element had dimensions of 2 [m]x2 [m]. He examined the raft
thickness for several values of 0.4, 0.5, 0.6, 0.8 and 2 [m].

The moment at any point on the raft foundation depends on the system rigidity of the foundation,
external load values and load distributions. So, the moment mx at the position of the concentrated
load, independently of rigidity formulae, can be used to find the rigid thickness of the raft in this
example. Here, the raft is considered rigid at a thickness gives moment mx more than 90% of the
maximum moment that can occur at that point.

The raft in this example is considered rigid for thickness more than 0.85 m according to
Deninger’s analysis. An application for Equation 5.2 to this example gives a system rigidity kst =
0.71. So, the raft is considered very stiff according to system rigidity of Gral3hoff (1987).

5-7



Theory for the calculation of shallow foundations
Chapter 5 Foundation Rigidity

2 Analysis and discussion

Series of computations using the finite element method for several values of raft thickness are
carried out. The moments and the settlements at some selected points are plotted against the raft
thickness to describe the foundation rigidity.

First, the raft is subdivided first into 24 x 24 square elements. Each element has dimensions of
0.5 [m] x 0.5 [m]. Then, it is subdivided into 12 % 12 square elements. Each element has
dimensions of 1 [m] x 1 [m] as shown in Figure 5.3. Taking advantage of the symmetry in
shape, soil and load geometry about x- and y-axes, the analysis is carried out only for a quarter
of the raft.

A A

24 % 0.5 =12 [m]

| |

@ — b .

— 1

24 x 0.5 =12 [m] 12 x1=12 [m]

Figure 5.3 Finite element meshes of the raft

To show the convergence of the solution by finite element method and to verify the rigid
thickness of the raft, the settlement s, at four characteristic points a, b, ¢ and d on the raft and the
rigid body translation Wo when the raft is perfectly rigid, are plotted against the raft thickness in
Figure 5.4 and 5.5. In which:

Point (a) Corner point of the raft
Point (b) Middle point of the raft edge
Point (c) Point under the load position
Point (d) Center point of the raft
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Raft thickness d [m]
0.0 0.4 0.8 1.2 1.6 2.0
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Figure 5.4 Settlement at the four characteristic points using mesh of 24 x 24 elements

Raft thickness d [m]

80 f ..... ——r e - Point a
[ N Pointb
S R Point C
120 _____________ Point d

Settlement S

160 L

Figure 5.5 Settlement at the four characteristic points using mesh of 12 x 12 elements

Figure 5.6 shows the moment mx at point ¢ under the concentrated load position using finite
element mesh of 24 x 24 elements and 12 % 12 [m] elements, respectively.
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Raft thickness d [m]
1.2 1.6 2.0

0 b,
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Moment my

3000 T
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=== 24 x 24 Elements \l
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Figure 5.6 Moment mx at characteristic point €

Figure 5.4 indicates that, if a fine mesh of 24x24 elements is used, the solution for the raft
thickness far 0.8 [m] will become divergence. In which no stability in the overall matrix occurs.
As a result, if the foundation is rigid enough, the raft rotations will approach to zero and the raft
will settle the same value of a displacement Wo. This cause, the number of equations becomes
greater than the number of unknowns. Another problem may be found that, the relation between
the plate element thickness and element size is limited by application of the finite element
method using plate-bending elements.

Figure 5.5 shows that, using a mesh of 12x12 elements gives good results. A comparison
between Figure 5.4 and 5.5, indicates that, although the solution by using a fine mesh of 12x12
elements is divergence, the rigid thickness of the raft can be determined because the limit of
rigid translation is known from the rigid solution.

Figure 5.6 shows that, the Deninger’s analysis cannot be used, in case of using a fine mesh of
24x24 elements, to find the rigid thickness of the raft where the position of maximum moment at
point ¢ is not clear in the figure. Further, for a raft with complex load geometry or types, using
this analysis is not practical, which represents the rigidity of the foundation only at the selected
point.

Figure 5.7 shows the parameter kr for the four characteristic points a, b, ¢ and d of the raft.
Figure 5.8 shows the parameter kr for the same characteristic points if a uniform load of 250
[kN/m?] replaces the external concentrated loads on the raft, which equal to the average contact
pressure, using also mesh of 12x12 elements.

The raft may be considered as rigid at thickness gives kr more than 90% for all characteristic
points.
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From Figure 5.7, the raft is considered rigid for thickness more than 0.80 [m]. The moment for
this thickness mx is 93 [%] from maximum moment at point €. This thickness also is different
from that of Deninger (1964) by 5.6 [%] and makes the raft very stiff according to Gral3hoff
(1987).

According to this analysis, Figure 5.8 shows that, the raft is considered rigid for thickness more
than 0.7 [m] when it carries a uniform load of 250 [kN/m?]. This means that the type of loading
has influence on the raft rigidity. Although the solution in this example is reported for a square
raft, the approach can be also considered applicable for general problems.

Raft thickness d [m]
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Figure 5.7 Parameter kr for the characteristic points (raft carries concentrated loads)
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Raft thickness d [m]
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Figure 5.8 Parameter kr for the characteristic points (raft carries a uniform load)
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Example 5.2 Rigidity of irregular raft on irregular subsoil

1 Description of problem

A general numerical example is carried out to show the applicability of system rigidity analysis,
which proposed by ElI Gendy (1998), to find the rigid thickness of rafts of any shape considering
re-entrant corner and opening within the rafts.

In one case the raft carries many types of external loads; concentrated loads, distributed load,
line load and moments in X-and y-direction as shown in Figure 5.9. The raft parameters are
Young’s modulus Ep = 2x107 [kN/m2] and Poisson’s ratio vo = 0.25. The level of foundation is
di=2.7 [m].

Figure 5.9 Raft dimensions, loads

The subsoil under the raft is characterized by three boring logs. Each has three layers with
different materials. The moduli of compressibility of the three layers for loading are Esi = 9500
[kN/m?], Es2 = 22000 [kN/m?] and Es3 = 120000 [kN/m?] while for reloading are Wsi = 26000
[KN/m?], Ws2 = 52000 [kN/m?] and Ws3 = 220000 [kN/m?]. Poisson’s ratio is assumed 0.3 and
constant for all soil layers. The effect of reloading and water pressure is taken into account.
Boring logs and locations are shown in Figure 5.10.

2 Analysis and discussion

The available solution from Kany/ EI Gendy (1995) for the analysis of raft foundations on three-
dimensional subsoil model using interpolation method is used here in the analysis of this general
example.

Four points on the raft are chosen to estimate the parameter kr, which represent the whole

foundation rigidity as shown in Figure 5.10-a. Figure 5.11 shows the parameter kr for these
points. It can be seen that, the raft is considered rigid for a thickness more than 1.01 [m].

5-13
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Raft thickness d [m]
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Figure 5.11  Parameter kr for the characteristic points a, b, ¢ and d

Another parameter K'r similar to kr is obtained from the contact pressure shape. This parameter
is plotted against raft thickness and for the 4 points in Figure 5.12. In which K’ is given by:

% =£1—ﬂ]x100 (5.7)
g
where:
of Contact pressure from elastic analysis at point i
Qi Contact pressure from rigid analysis at point i

AQgi  Absolute difference between Qi and gi at that point i

Although Figure 5.12 gives a rigid thickness more than 1.05 [m] nearly as the same as that of
Figure 5.11, but it is recommended to use Kr in which the rigid movement plane can be described
only by three points.

To check the validity of the analysis for this example, the moments mx and my at point b are
plotted against raft thickness in Figure 5.13. The moments at a raft thickness of 1.01 [m] are
compared with the maximum moments that may occur at that point. It is found that, both
moments Mx and my check closely, where the value of mx is 92 [%] from maximum mx while the
value of my is equal to 95 [%] at the same point.

Although the raft in this example has a constant thickness, but it can determine the foundation
rigidity when the thickness is variable. In this case, the rigidity of the foundation may be
determined through plotting the parameter kr against Young’s modulus of elasticity of the raft
material Ep at several values of Eb.
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Raft thickness d [m]
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Figure 5.12  Parameter K'r for the characteristic points a, b, ¢ and d
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Figure 5.13  Moment mx and my at characteristic point b
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Example 5.3: Effect of girders on the raft rigidity
1 Description of the problem

Ribbed raft may be used for many structures have heavy loads or large spans, if a flat level for
the first floor is not required. Consequently, concrete is reduced. Such structures are silos and
elevated tanks. In spite of this type of foundation has many disadvantages if used in normally
buildings, still used by many designers. Such disadvantages are the raft needs deep foundation
level under the ground surface, fill material on the foundation to make a flat level and an
additional slab on the fill material to construct the first floor. The use of the ribbed raft relates to
the simplicity of analysis by hand calculations.

First, both of the two rafts with and without ribs are clearly saves and correct, but there is still a
question, whose one of the two types is more rigid? To answer this question the following
example is presented.

Consider the foundation of an elevated tank may be designed for both types of foundations. The
foundation has the dimensions of 20 [m] % 20 [m], transmits equal loads for all 25 columns, each
of 1000 [kN]. The loads give average contact pressure on soil gav = 62.5 [kN/m?]. Columns are
equally spaced, 4 m apart, in each direction as shown in Figure 5.14.
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Figure 5.14  General plan of rafts

The analysis of the foundation is carried out to study the effects of soil types, rigidity of girders
and slabs. A detail description of each parameter is presented as follows:

2 Soil
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Three subsoil models are considered:

1) Simple assumption model (conventional method) that assumes linear distribution
of contact pressure on the bottom of the slab. The model considers no interaction
between the raft and the subsoil.

i) Winkler’s model that represents the subsoil by isolated springs.

ii1) Layered model that considers the subsoil as continuum medium.

The raft resting on a soil layer of 20 [m] equals the raft side, overlying a rigid base. The soil
types are represented by the modulus of elasticity, Es, for layered model, which yields modulus
of subgrade reaction, ks, for Winkler’s model. Table 5.1 shows the different soil types examined
in this example according to the soil properties Es and ks. Poisson’s ratio is taken vs = 0.3 for all
soil types.

Table 5.1 Soil properties for different soil types

Es [kN/m?] | 5000 | 10000 | 15000 [ 20000 | 25000 | 30000 | 35000 | 40000 | 45000 | 50000

ks [kN/m®] | 583 | 1166 | 1749 | 2332 | 2915 | 3498 | 4081 | 4664 | 5247 | 5830

3 Concrete material

The parameters of raft material are Young’s modulus Ep = 2x107 [kN/m?], Poisson’s ratio vb =
0.25 and shear modulus Gp = 1x107 [kN/m?].

4 Girders

A rectangular cross section is used for the girders with constant width of 0.40 m. The effect of
girder rigidity is studied by varying its depth dg. Influence of the effective flange width of the
slab on the moment of inertia of the girder is neglected.

5 Slab

For different chosen values of girder depth dg, the corresponding values of slab thickness are
0.25,0.30, 0.35, 0.40, 0.45 and 0.50 [m].

6 Analysis and discussion

The study of the raft is done for both cases, with and without girders. First the foundation is
designed using working stress method according to the Egyptian code of practice (ECP), for
concrete and steel grades fc = 60 [kg/cm?] and fs = 1400 [kg/cm?] respectively. The design is
carried out using the classical method without interaction between the soil and the foundation.
Through this design the dimensions of the raft with girders are slab thickness ds = 0.25 [m],
girder depth dg = 0.85 [m] and girder width bg = 0.40 [m], while the thickness for the flat raft is
dr = 0.55 [m]. The analysis is focused on the layered Continuum model, because it is more
realistic than Winkler’s model for simulation of most soil types.

6.1  System rigidity
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A good advantage of the foundation rigidity analysis, which proposed by El Gendy (1998), is
the possibility to find the system rigidity of rafts having any shape such as ribbed rafts
considered in this example. Therefore, series of computations are carried out for many variables
with the parameter kr obtained at the center of the raft, to compare between the system rigidity of
the two types of rafts with and without girders.

Figure 5.15 shows the parameter kr with the raft thickness ds in case of the flat raft while Figure
5.16 shows the parameter kr with girder depth dg at different slab thickness in case of the ribbed
raft. Both of the two figures are considered for soil of Es = 10000 [kN/m?].

Raft thickness ds [m]
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Figure 5.15  Parameter kr with raft thickness at the center of the raft (Es =10000 [kN/m?])

From these figures, it can be found that, the flat raft of thickness dr = 0.55 [m] gives parameter Kr
= 60 [%] while the raft of slab thickness ds = 0.25 [m] and girder depth dg = 0.85 [m] gives
parameter kr = 52 [%]. This means the ribbed raft designed by the classical method has rigidity
less than that of the flat raft designed also by the same method. The ribbed raft, which gives
parameter kr = 60 [%] equals to that of the flat raft, can be easily obtained from Figure 5.16. In
which may be had one of the following dimensions in Table 5.2.

Table 5.2 Dimensions of ribbed rafts, which give parameter kr =60 [%]

Slab thickness ds [m] 0.25 0.30 0.35 0.40 0.45 0.50

Girder depth dg [m] 1.25 1.20 1.15 1.10 0.90 0.75

From Figure 5.16, it can be concluded that, the slab thickness ds for rafts with a small girder dg
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has great influence on the system rigidity. This influence decreases by increase the girder depth
dg until dg = 2.0 [m], then becomes constant. This means that the girders of depth dg > 2.0 give
most the system rigidity.

Girder depth ds [m]
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Figure 5.16  Parameter kr with girder depth at the center of the raft (Es = 10000 [kN/m?])

To check the system rigidity of the rafts with and without girders at different soil types, the
parameter Kr for three selected rafts is plotted with the soil modulus Es as shown in Figure 5.17.

The three rafts are:

Raft 1 flat raft of thickness dr = 0.55 [m]

Raft 2 ribbed raft has slab thickness ds = 0.25 [m] and girder depth dg =0.85 [m]
Raft 3 ribbed raft has slab thickness ds= 0.25 [m] and girder depth dg =1.25 [m]

Figure 5.17 shows that the rafts 1 and 3 that have the same system rigidity at soil type Es =
10000 [kN/m?] have also the same system rigidities for all soil types. The range of the difference
in kr of raft 2 and raft 1 (or raft 3) is 20 [%] to 5 [%] for weak soil of Es = 5000 [kN/m?] to
medium soil of Es = 20000 [kN/m?]. This difference decreases slowly for Es > 20000 [kN/m?]
with increase of Es until stiff soil of Es = 45000 [kN/m?], then kr of raft 2 becomes identical with
that of raft 3.

To show the influence of the soil types on the system rigidity of ribbed rafts, the parameter kr is
plotted with the girder depth at different soil types as shown in Figure 5.18. The raft has 0.25 m slab
thickness. From Figure 5.18, it can be noted that, the system rigidity of raft on weak soil increases
quickly rather than that of raft on stiff soil with increase of girder depth. At a small depth dg, the
difference in kr of raft on weak soil and that of raft on stiff soil is small. This difference increases
slowly until depth dg = 1.75, then becomes nearly constant for the other depths more than 1.75 [m].
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Figure 5.17  Parameter kr with soil modulus Es at the center of the raft
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Figure 5.18  Parameter kr with girder depth at different soil types at the center of the raft
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6.2  Effect of girders on differential settlement between columns

The effects of the girder rigidity and the soil types on differential settlement are studied by
comparing the differential settlement between central column cc and its adjacent column ca for
the flat raft (raft 1) and ribbed rafts (rafts 2, 3).

Figure 5.19 shows the differential settlement Af with the soil rigidity represented by its modulus
of elasticity Es. From Figure 5.19, it can be found that, the differential settlement Af decreases
quickly with the increase of Es from Es = 5000 [kN/m?] to 10000 [kN/m?], then decreases slowly
with the increase of Es from 10000 [kN/m?] to 50000 [kN/m?] for both raft types. This figure
indicates also that the differential settlement Af for ribbed raft coincides with that of flat raft if
the two types have the same rigidity (rafts 1 and 3) for all soil types. It is clearly that, the ribbed
raft designed by classical method (raft 2) has differential settlement higher than that of rafts with
and without girders (rafts 1 and 3), which have the same rigidity in case of weak soil. The
increasing in differential settlement for raft 2 reaches 33 [%] to 14 [%] compared with those of
rafts 1 and 3 in cases of soils have Es = 5000 [kN/m?] and Es = 10000 [kN/m?] respectively.
However, for Es greater than 25000 [kN/m?] until for stiff soil the differential settlement for raft
2 becomes less than that of rafts 1 and 3.

Soil modulus Es [kN/m?]

10000 20000 30000 40000 50000
Y R S P L T D E

Differential settlement Af [cm]

0.8

Figure 5.19  Differential settlement Af between columns with soil modulus Es
6.3  Effect of girders on contact pressure

The contact pressure under the ribbed rafts (raft 2 and 3) at section I-1 for two soil types, weak
and stiff, are compared with that of flat raft (raft 1).

The soil modulus for weak soil is Es = 5000 [kN/m?] while for stiff soil is Es = 50000 [kN/m?] in
case of layered model. The corresponding modulus of subgrade reactions for these two soil types
are ks = 583 [kN/m’] and ks = 5830 [kN/m’] for weak and stiff soil respectively in case of
Winkler’s model.
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Figure 5.20 shows the distribution of contact pressure at section I-I for Winkler’s model, while
Figure 5.21 shows the distribution for layered model. The contact pressure according to the
conventional method is plotted at the same figures. As the contact pressure distribution is similar
to that of settlement distribution for Winkler’s model. Therefore, Figure 5.20 shows also the
settlement at section I-I multiplied by the modulus ks.

The effect of girders on the contact pressure is clear along the rafts for both Winkler’s and
layered models. Such effect is very remarkable for weak soil, where the presence of girders
increases the contact pressure under the girders. On the other hand, the girders decrease this
contact pressure in the middle of the panels. Other figures, are not included, show that the
presence of girders leads to negative pressure at the corner of the raft in case of layered model
for raft 2 of the less rigidity. The contact pressure of ribbed raft locates within the average range
that of flat raft, if the two types have the same rigidity (rafts 1 and 3). This is obvious for stiff
soil where may be coinciding with it. For the conventional method, the effect of girders plays no
role on the contact pressure where is constant for all soil types and equal to the average load on
the raft.

X [m]

52 1

56}

60

Contact pressure q [kN/m?]

64 ]

68

ks = 583 ks = 5830

Figure 5.20  Contact pressure at section I-I for Winkler’s model
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Figure 5.21  Contact pressure at section I-I for layered model
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Example 5.4: Comparison between raft and grid foundations
1 Description of the problem

El Arabi/ ElI Gendy (2001) examined the structural analysis and design of the three common
foundation systems: raft, grid and isolated footings. They carried out the examination to evaluate
the different types of structural systems in order to decide the most suitable ones for a specific
situation. Here, an example is chosen from the above study with some modifications. Consider
the foundation system shown in Figure 5.22, which may be designed as raft or grid. The raft
dimensions are 30.5 [m] % 30.5 [m] while the overall grid dimensions are 33.0 [m] % 33.0 [m],
with a constant strip width in both directions. The foundation carries 49 column loads, which are
equally spaced, 5.0 [m] apart, in each direction. Column loads and the arrangement of columns
are shown also in Figure 5.22.

50 50 50 5.0 5.0 5.0
400 900 900 000 /
| | | | | | |
5‘0 . . . . .
!900 1600 !1600 |1600 | | |
; : : : 16.5
50 | | | | | |
900 1 1600 11600 11600 ' ' |
._¢_._.¥_._._¢._._¥_._.*_._._¢._._¥_
o L imimir
boo 1600 1600 1600 | | |
50 : ! :
| | | | | | |
L A S S A AR N
>0 | | | | | | | 16.5 [m]

50 | | | |

15.0 [m] 16.5 [m] ——

Raf Gri
Figure 5.22  Foundation systems under consideration with loads
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Both the raft and grid have the same uniform thickness d. The two foundations have the same
contact area and column loads. Consequently, they will have the same average contact stress.
Results are presented as functions of the ratio d/I, where | is the span between columns. For the
sake of comparison, the volume of reinforced concrete of the entire foundation system whether
raft or grid is kept unchanged.

2 Concrete material

The raft and grid are analyzed and designed for the following material parameters:

Concrete grade C 200

Steel grade S 36/52

Concert cube strength feu =200 [kg/cm?]
Compressive stress of concrete fc=38 [kg/cm?]
Tensile stress of steel fs=1800 [kg/cm?]
Young’s modulus of concrete Eb =2x107 [KN/m?]
Poisson’s ratio of concrete vb=0.20

Unit weight of concrete Yo =10.0 [KN/m?]

Unit weight of concrete is chosen yb = 0.0 to neglect the own weight of the foundations.
3 Soil properties

The effect of the soil type is represented by changing the modulus of compressibility Es.
Poisson's ratio and the unit weight of the soil are taken as vs = 0.3 and ys = 18 [kN/m’]
respectively for all soil types. Four different soil types are examined according to the soil elastic
parameter Es, in which Es = 5, 10, 20, and 40 [MN/m?]. The thickness of the soil layer is
considered according to the limit depth of the soil layer.

4 Results and analysis

It should be noticed that each of the two structural systems described above is valid as a
foundation system for the problem under consideration. The raft and grid have the same average
contact pressure on the soil, (av = 64 [kN/m?] and the same loading system. Accordingly, their
contact areas are equal, Ar = 930.25 [m2]. Although the allowable bearing capacity (equal to
average contact pressure) is always used to determine the foundation area, the maximum
permissible settlement Smax allover the foundation governs the allowable bearing capacity of the
soil, especially for great foundation such as in this example.

The analysis is carried out to study the effects of soil type and foundation thickness on the
foundation behavior. The main results are the system rigidity, soil settlement, differential
settlement, angular distortion, bending moments and the optimal thickness of foundation. A
detailed description of the influence of each parameter is discussed in the following sections.

4.1  Limitdepthts

The level of the soil under foundation at which no settlement occurs or the expected settlement
will be very small where it can be ignored is defined as the limit depth of the soil. In this
example, the limit depth is chosen to be the level at which the stress in the soil o€, resulting from
the foundation pressure at the contact surface with soil, reaches the ratio § = 0.1 of the initial
vertical stress ov. The stress in the soil oe is determined at the center of the foundation. As
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mentioned before, the average stress resulting from the foundation pressure at the surface is 6o =
64 [kN/m2] for both the raft and grid (own weight of foundation is neglected). Results of the
limit depth calculation are shown graphically in Figure 5.23. The computed limit depth is ts =
19.53 [m] for raft and ts = 18.93 [m] for the grid under the ground surface. Figure 5.23 also
shows that the stress on the soil due to the grid is less than that of the raft. This is because the
grid foundation has a wider extension at the contact surface with the soil associated with many
unloaded spots among the grid strips. The interaction between the stress fields in this case leads
to better stress distribution in the subsoil than the case of raft foundation. Accordingly, it can be
said that the grid system might give better solution when the building is constructed on a ground
that contains weak soil layers at a relatively deep level. Moreover, the discontinuity of the grid
system allows for drainage at the ground surface, which can lead to better consolidation
behavior if a clay layer exists under the foundation. In such circumstances, it is recommended to
investigate the settlement behavior of the system.

I O O [KN/m]

4 NN

Stress due to the raft

Initial vertical
stress ov = s

= 34 [KN/m’]
— 340 [KN/m2 OEI
ov1 =340 [kN/m’] , t=18.93 [m] ‘
/ v -

ov2 = 360 [kKN/m?] ts2=19.93 [m] oe2= 36 [kN/m?]

Figure 5.23  Limit depth ts of the soil under both the raft and grid

4.2  System rigidity

Figures 5.24, 5.25 and 5.26 show the variation of the parameter kr with the ratio d/I for raft and
grid at the center for different soil types. From those figures, it is clear that all systems become
more rigid for all types of soil as the foundation thickness increases. The foundation contribution
into the whole system rigidity becomes higher as the soil becomes weaker. For instance, a raft of
90 [cm] thickness (d/I = 0.18) Figure 5.24, gives a rigidity parameter for the raft kr = 62, 66, 76,
and 83 [%] for Es = 40, 20, 10 and 5 [MN/m?] respectively while for the grid gives kr = 35, 41,
48, and 59 [%] for Es = 40, 20, 10 and 5 [MN/m?] respectively. It is also clear that, as the soil
becomes weaker as the foundation thickness for a given rigidity kr becomes smaller. Figure 5.26
shows a comparison between the rigidity parameters kr for the raft and grid systems when Es =
10 [MN/m?]. It can be seen that for the same type of soil and a given depth ratio d/I, the raft
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gives maximum system rigidity if compared with the grid. The difference in rigidity between the

two systems is about 25 [%] for all values of the ratio d/I.

0.30

d/l
0.10 0.14 0.18 0.22 0.26 0.30
30 + 'I + 'I + 'I + 'I +
: : — . —Es=40 [MN/m?]
B 40 +———- _l_ ........ _|. ..... — Ee = 20 [MN/m]
e R U T (e = (1
X | | — Es=5 [MN/m’]
E 60
(0]
=
=
£ 70
80
90
100
Figure 5.24  Variation of kr at the center of the raft with the ratio d/I for different soil types
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Figure 5.25  Variation of kr at the center of the grid with the ratio d/I for different soil types
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Figure 5.26  Variation of kr at the foundation center with the ratio d/I
for soil of Es = 10 [MN/m?]

4.3 Differential settlement and soil settlement

The influence of foundation rigidity and the soil type on the settlement is given in Figures 5.27
to 5.30. In Figure 5.27 and 5.28, the maximum differential settlements between adjacent
columns are plotted as functions in the ratio d/l for the two different foundations. Figures 5.29
and 5.30 show, respectively, maximum differential settlements and the central settlement for raft
and grid when the soil has Es = 10 [MN/m]. It can be seen that the differential settlement
decreases with the increase of foundation thickness for the two types of foundations, especially
for weak soil. As it is expected, the weaker the soil, the bigger the differential settlement. Raft
system is the most efficient system in resisting the differential settlement and declining the
settlement. The difference between the deferential settlement of the raft and that of the grid
decreases when the foundation thickness increases. Figure 5.30 shows that the difference
between the central settlement of the raft and that of the grid is about 0.7 [cm] for all ratios d/I.
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Figure 5.29  Maximum differential settlement between adjacent columns with the ratio d/I for
soil of Es = 10 [MN/m?]
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Figure 5.30  Settlement at foundation center with the ratio d/I for soil of Es = 10 [MN/m?]
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4.4  Angular distortion

In this analysis, the angular distortion 1/Lij between any two nodes i and j on the foundation is
defined according to Hemsley (1998) as:

(5.8)

where:
Si and S; Nodal settlements
lij Distance between the nodes i and j.

Relative to any "primary node" i (1 <i<n), it is a simple matter to scan all the remaining (n-1)
nodes on the surface element mesh to locate the "secondary node" j associated with the
maximum angular distortion. This procedure is repeated for each node in the mesh to give n
values of maximum distortion, denoted by 1/Ln.

Figures 5.31 and 5.32 show the contour lines of nodal angular distortion 1/Lij for raft and grid for
different soil types. Moreover, a comparison between the limiting contour values for raft and
grid is given in Table 5.3. The thickness of the raft and grid is d = 0.5 [m]. For the same soil
conditions, the angular distortion is more considerable in the grid if compared with the raft. The
stiffening effect of ribs reduces the grid distortion as can be seen clearly from Table 5.3.

Table 5.3 Maximum and minimum contour values for raft and grid

Contour values of angular distortion reciprocal (1/Lij)

Es [kN/m?]

Foundation system
5000 10000 20000 40000

Max. | Min. | Max. | Min. | Max. | Min. | Max. | Min.

Raft 220 150 410 270 775 500 1500 | 800

Grid 165 115 310 210 625 400 1250 | 700
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Figure 5.31  Contour lines of nodal angular distortion for a raft of 0.5 [m] thickness.
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Figure 5.32  Contour lines of nodal angular distortion for a grid of 0.5 [m] thickness
45  Optimal thickness

In this study, the optimal thickness is defined as the minimum thickness of foundation for which
the concrete section and tensile reinforcement are enough to resist the flexure moments without
compressive reinforcement. The optimal design of reinforced concrete sections is based on the
provisions of ECP 464 (1989) for working stress method. In this case, the maximum moment
Mmax and the sustained moment Ma for the system under consideration are calculated for
different values of the thickness t (t=d + 5 [cm] cover). The maximum moment Mmax resulting
in the foundation is obtained from foundation analysis.

The sustained moment Ma for singly reinforced section according to working stress method is
obtained from:

2
v, =SB (5.9)
K=
where:
c Concrete cover plus the radius of reinforcement bars.
B Width of the section to be designed.
ki Coefficient for design of singly reinforced sections as given by code.

The minimum thickness of foundation is obtained when both moments Mmax and Ma are equal.
The optimal thickness of raft and grid is designed for the maximum moment obtained from the
analysis. The maximum moment Mmax and the sustained moment Ma are calculated for the raft
and grid at different values of the foundation thickness and for various types of soil. Sustained
moments are calculated according to the working stress method of ECP 464 (1989). The Results
are given in Figures 5.33 and 5.34. According to the results, the bending moments increase as
the foundation thickness increases, and as the soil stiffness decreases as well. This is because the
layered model used in the analysis strongly depends on the soil properties.

The optimal thickness of raft and grid resting on different types of soil can be obtained from
Figures 5.33 and 5.34 respectively. For a given soil, the optimal thickness is the thickness
corresponds to the intersection of two curves: the optimal moment curve and the moment curve
representing the given soil. It is clear that the optimal thickness of either raft or grid increases as
the soil stiffness decreases. Unless it is essential, an unnecessary increase in the foundation
thickness is not preferred as it attracts more bending moments and gives more costly design.

For the problem under consideration when Es = 5 [MN/m?], Figures 5.33 and 5.34 show that the
working optimal depths of raft and grid are respectively about 0.85 [m] and 0.95 [m], keeping in
mind that | = 5.0 [m]. This means about 11 [%] material saving for the raft than that for the grid
because both foundations have the same contact area. Furthermore, Figures 5.24, 5.25, 5.27, and
5.28 show that the rigidities of raft and grid are 80 [%] and 63 [%], and the corresponding
maximum span distortions are about 0.0028 and 0.004, respectively. Therefore, one can say that
raft present the most appropriate solution for weak soil conditions.
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Figure 5.33  Determination of optimal thickness of the raft
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Figure 5.34  Determination of optimal thickness of the grid

5 Recommendations for foundation systems selection
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Based on the analysis and results discussed before, Table 5.4 gives some recommendations that
can put the designer on the economic side and help him to choose an appropriate foundation
system for certain soil foundation conditions.

Table 5.4 Selection between raft and grid

Suitable foundation system
Case of selection
Raft Grid
Soil has Es > 20 [MN/m?] - X
Soil has Es < 20 [MN/m?] X —--
Weak layer at relative deep level (z> 0.8 ts ) --- X
Consolidated layer under foundation --- X
Column span exceeds six times foundation thickness X -—-
Column span less than six times foundation thickness X X

6 conclusions

In general, the following conclusions are drawn:

- For the two foundation systems, the bigger the foundation depth, the higher the system
rigidity and the lower the settlement and angular distortion, especially for weak soil

conditions.

- Any unnecessary increase in the foundation thickness should be avoided because it leads
to higher bending moments and more costly design.

- For weak soil conditions, an optimal raft system seems to be the most appropriate and
economic solution, because it has higher rigidity for smaller optimal thickness and it
reduces the differential settlement.

- Grid systems cause slightly lower stresses in the soil and their discontinuity at the

contact  surface may lead to better consolidation behavior, which might attract the

designer interest when he deals with highly compressible soils.

- On the same soil type, foundation area and thickness, the rigidity of the raft is more than
that of the grid by Akr =25 [%].

- Angular distortion for the grid is less than that of the raft by 13 [%] to 25 [%].

- For weak soil, the raft saves about 11 [%] material comparing with the grid.
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6.1 Introduction

The presence of the structure on compressible subsoil causes settlements for the foundation and
also for the structure itself. Values of settlements and settlement differences depend not only on
the thickness of the compressible soil layer under the foundation, the value and distribution of
structure loads, the foundation depth and contact pressure under the foundations but also on the
flexural rigidity of the structure.

One of the properties that has a considerable influence on the development of settlement is the
rigidity of the superstructure. The more rigid structure has more uniform settlement and
conversely, structure that is more flexible has greatest difference in settlement. The entire
structure can be defined as the three media: superstructure, foundation and soil. The analysis of
the entire structure as one unit is very important to find the deformations and internal forces.
However, most of the practical analyses of structures neglect the interaction among the three
media to avoid the three-dimensional analysis and modeling. The structure is designed on the
assumption of non displaceable supports while the foundation is designed on the assumption that
there is no connection between columns. Such accurate analysis of the entire structure is
extremely complex.

The early studies for consideration the effect of the superstructure were by Meyerhof (1953) who
suggested an approximate method to evaluate the equivalent stiffness that includes the combined
effect of the superstructure and the strip beam foundation. Kany (1959) gave the flexural rigidity
of a multi-storey frame structure by an empirical formulae. Also, Kany (1977) analyzed the
structure with foundation using a direct method. Demeneghi (1981) used the stiffness method in
the structural analysis. Panayotounakos/ Spyropoulos/ Prassianakis (1987) presented an exact
matrix solution for the static analysis of a multi-storey and multi-column rectangular plexus
frame on an elastic foundation in the most general case of response and loading.

At the analysis of foundations with considering the superstructure stiffness, it is required to
distinguish between the analysis for plane structures (two-dimensional analysis) and that for
space structures (three-dimensional analysis). Further, it is required to distinguish between
approximation methods with closed form equations (Kany (1974), Meyerhof (1953), Sommer
(1972)) and refined methods such as conventional plane or space frame analysis (Kany (1976)),
Finite Elements (Meyer (1977), Ellner/ Kany (1976), Zilch (1993), Kany/ EI Gendy (2000)) or
Finite Differences (Bowles (1974), Deninger (1964)).

In addition, many analytical methods are reported for analysis of the entire structure as one unit
by using the finite element. For examples:

Haddadin (1971) presented an explicit program for the analysis of the raft on Winkler’s
foundation including the effects of superstructure rigidity.

Lee/ Browen (1972) analyzed a plane frame on a two-dimensional foundation.

Hain/ Lee (1974) employed the finite element method to analyze the flexural behavior of a
flexible raft foundation taking into account stiffness effect of a framed superstructure. They
proposed the use of substructure techniques with finite element formulation to model space
frame raft soil systems. The supporting soil was represented by either of two types of soil
models (Winkler and half space models).



Theory for the calculation of shallow foundations
Chapter 6 Effect of Superstructure Rigidity on Foundation

Poulos (1975) formulated the interaction of superstructure and foundation by two sets of
equations. The first set links the behavior of the structure and foundation in terms of the applied
structural loads and the unknown foundation reactions. The second set links the behavior of the
foundation and underlying soil in terms of the unknown foundation reactions.

Mikhaiel (1978) considered the effect of shear walls and floors rigidity on the foundation.

Bobe/ Hertwig/ Seiffert (1981) considered the plastic behavior of the soil with the effect of the
superstructure.

Lopes/ Gusmao (1991) analyzed the symmetrical vertical loading with the effect of the
superstructure.

Jessberger/ Yuan/ Thaher/ Ming bao (1992) considered the effect of the superstructure in case of
raft foundation on a group of piles.

Zilch (1993) proposed a method for interaction of superstructure and foundation via iteration.

Kany/ El Gendy (2000) proposed an iterative procedure to consider the effect of superstructure
rigidity on the foundation. In the procedure, the stiffness of any substructure such as floor slab or
foundation, connected by the columns can be represented by equivalent spring constants due to
forces and moments at the connection nodes. Consequently the stiffness matrices of the slab
floors, columns and foundation remain unaffected during the iteration process.

6.2  Simplified modeling of superstructure foundation soil system
6.2.1 RIigidity of the structure

Sometimes at the analysis of shallow foundations, examining the influence of the structure
rigidity is imperative. Two rigidities concerning the rigidity of the structure are required to be
computed. The first rigidity is the flexural rigidity of the structure that is independent of the
deformation behavior of the subsoil. The second one is the system rigidity that expresses the
ratio of the flexural rigidity of the structure to the stiffness of the subsoil.

In the analysis scope of shallow foundations, the following questions are required to be
answered:

- How flexural rigidity and system rigidity in a specific case are computed?
- At which value of the system rigidity a structure can be described as practically rigid?
- What is the influence of the flexural rigidity of the structure on the analysis results?

The presence of the superstructure on the foundation causes besides the stiffness of the
foundation alone further stiffness on the system. This influence is great, when the ratio of the
flexural rigidity of a structure to that of the foundation is great.

The flexural rigidities of the superstructure and foundation elements, and the stiffness of the
subsoil have been identified by many authors (Brown/ Yu (1986), Lee/ Harrison (1970) and
Meyerhof (1953)). The absolute stiffness of superstructure Ks [kNm?], foundation K [kNm?]
and subsoil Ks [kNm?] or Kc [kNm?] can be obtained as it is described in the following section.

6-3
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6.2.1.1 Flexural rigidity of the superstructure

The flexural rigidity of the superstructure Ks [kNm?] is expressed through the product of
modulus of elasticity Es [kN/m?] of the superstructure material and the ideal moment of inertia
Is [m*] of the entire superstructure system:

Kg =Eg I (6.1)
According to Meyerhof (1953), the flexural rigidity of the multi-storey superstructure composed

of slabs and columns (or walls) running in the longitudinal direction of the bending axis can be
obtained approximately as follows (Figure 6.1):

L=mnml

Figure 6.1 Details of multi-storey frame with foundation (Meyerhof’s formulae)

i) The superstructure is open frame

In any storey i of an open multi-storey building frame with approximately equal bays, the

flexural rigidity is given by:
K,+K L
EglL=E I 1+ ———>— || = 6.2
e { {Kr+Ku+KOJ(I2J} (6.2

where:

Ns Total number of storeys

L Total length of the superstructure (=ns |) [m]
Kr= I/l Average stiffness of floor [m?]
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Ir Moment of inertia of floor [m*]

I Length of bay or floor beam [m]

Ku= lu/hu Average stiffness of lower columns [m?]

lu Moment of inertia of lower columns [m*]

hu Height of storey under the floor [m]

Ko= lo/ho Average stiffness of upper columns [m?]

lo Moment of inertia of upper columns [m*]

ho Height of storey upper the floor [m]

li Average moment of inertia of the storey i [m*]

The total stiffness of the entire superstructure is then given by:

(6.3)

i) The superstructure is an open frame with wall cladding

External building frames are generally stiffer than indicated above due to wall cladding. In this
case the, frame consists of solid panels between the beams and columns and only shearing stress
can be transmitted from the frame to the panels. Therefore, in any storey i the flexural rigidity of
Equation 6.2 is increased further as:

E I, L2

Ko =Eqlg =By | +—1t— (6.4)
where:
Erlf =Eftwh312  Flexural rigidity of the panel (in vertical plane) [kNm’]
It Moment of inertia of wall [m*]
Es Modulus of elasticity of the wall material [KN/m?]
tw Wall thickness [m]
h Wall height [m]

iii) The superstructure is constructed as a deep beam

If the wall cladding is fully continuous so that the whole frame behaves like a solid deep beam,
the flexural rigidity of the frame itself can frequently be ignored compared with that of the wall.
Therefore, the flexural rigidity of the superstructure can be approximately obtained from:

_EBth3

KB:EBIB 1

(6.5)

where:
H Height of wall or superstructure [m]

With sufficiently great number of bays ni, the following approximation Equation 6.6 for
estimating the flexural rigidity of multi-storey open frames without wall cladding can be used:
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where:
Ks=1Is/h Average stiffness of upper and lower columns [m?]
Is Average moment of inertia of upper and lower columns ~ [m*]

Equation 4.6 is derived from Equation 4.2 when Ks = Ky = Ko = constant and ni* 2Ks/(Kr +2Ks)
»1

6.2.1.2 Flexural rigidity of the foundation

The flexural rigidity Ke [kNm?] of a foundation of width B [m] and thickness d [m] is given by:

E, Bd’
Ke=Eg lg=—2 6.7
G G 'G 12 ( )
where:
lc Moment of inertia of foundation [m*]
Ec modulus of elasticity of the foundation material [KN/m?]

Now, the total flexural rigidity of the entire structure Eb | [kNm?] can be defined as the sum of
the flexural rigidities of the foundation K [kKNm?] and the superstructure Ks [kNm?].

E, | =E; I +E; I (6.8)
where:
| Ideal moment of inertia for the entire structure [m*]
Eb Average modulus of elasticity for the entire structure [KN/m?]

6.2.2 Stiffness of the subsoil

The stiffness of the subsoil for Winkler’s model depends on modulus of subgrade reaction ks
[KN/m?] while for Continuum model depends on modulus of compressibility Es [kN/m?].

For a rectangular foundation of width B [m] and length L [m] the stiffness of the subsoil for
Winkler’s model Kw [kNm?] is given by:

K,=k LB (6.9)

while for Continuum model Kk [kKNm?] is given by:

K,=E L B (6.10)

S
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6.2.3 System rigidities
The decision of whether a structure or foundation has to be considered as rigid, elastic or flexible
depends on the ratio between the rigidity of the superstructure including the foundation and the

stiffness of the subsoil.

If one neglects the superstructure, the system rigidity for Winkler’s model K¢ [-] is given by:

3
K=ol _ B |d (6.11)
ok LB 12k L | Ly

while for Continuum model Ks [1] is given by:

3
K, = B ! = B (ij (6.12)
E.Li B 12E | L,
where:
Ke System rigidity for Winkler’s model [-]
Ks System rigidity for Continuum model [-]
Es Modulus of elasticity of foundation material [KN/m?]
I B d*/12 = Moment of inertia of foundation section [m*]

To consider the rigidity of the superstructure in Equations 6.11 and 6.12, the foundation
thickness d [m] in the Equations is replaced by an ideal foundation thickness di [m]. The ideal
foundation thickness di [m] is the thickness of a rectangular cross section which has the same
ideal moment of inertia for the entire structure | [m*] and width B [m] according to Equation 6.8.

121
d, =3 - (6.13)

In addition, to take the effect of the superstructure on the foundation, the analysis of the
foundation shall be carried out with ideal thickness of the foundation di [m] instead of the
original foundation thickness d [m].

According to experiences and based on great number of comparative computations, the values of
the system rigidity between foundation and subsoil, at which the system can be considered as
rigid are already existed (Borowicka (1939), Gralhoff (1987) and Kany (1974)). Table 6.1
shows a list of different values for the system rigidity according to the German Standard DIN
4018.
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Table 6.1 Numerical values for different grade of system rigidity

Winkler’s model

Continuum model

Kpe= 12 Ke [1] Kst= 12 Ks [1] Description
Kge > 0.2 Kst=>1.0 Rigid
0.2 > Kee> 0.08 1.0 > Kst> 0.4 Very stiff
0.08 > Kge > 0.04 0.4> Kst>0.2 Medium stiff
0.04 > Kge> 0.02 0.2> Ksi>0.1 Stiff
0.02 > Kge> 0.008 0.1 > Kst> 0.04 Elastic

0.008 > Kge > 0.004 0.04 > Kst> 0.02 Medium elastic
0.004 > Kge > 0.002 0.02 > Kst> 0.01 Very elastic
0.002 > Kge 0.01 > Kst Flexible

Besides the practical meaning of the system rigidity for the decision of structure rigidity, it can
be also used to choose the applicable numerical model for specific case according to the system
rigidity. In case of rigid foundations (or rigid structures), it is expected simplification results by
computing the contact pressure and soil settlement. Therefore, a simplified numerical model may
be used here. For Winkler’s model, the distribution of contact pressure changes to simple
distribution like that of the simple assumption model. For Continuum model, the contact
pressure for a regular foundation can be obtained directly by the closed formulae of Boussinesq.
In addition, the tables of Kany (1974) for obtaining the contact pressure under rigid foundations
are applicable here. For flexible structures such as a group of footings, the loads on the
foundations are known (statically determinate structure). Therefore, only the interaction of
footings through the subsoil due to the overlap stress in soil may be taken into account at the
analysis.

6.2.4 Modeling of wall-floor superstructure in the raft analysis

In most design applications, the only significant additional stiffness is provided by shear walls.
Here, modeling the wall and its floor connections by beam elements joined to the raft in the plan
positions of the wall is normally sufficient. According to evaluated measurements of settlements,
considering only one or two storey’s above the raft is usually necessary.

This stiffness can be determined approximately by defining the effective wall dimension.
Guidelines for calculating effective flange width bett [m] according to Hemsley (1998) are given
in Figure 6.2. Table 6.2 shows also effective flange widths for inner and edge walls. These
effective flange widths depend on whether the floor slab is continuous on either sides of the wall
or only on one side. Flange widths also depend on the wall spacing Bw [m] and span Lw [m]. In
the analysis, the lowest of the three values of flange width beft [m] in Table 6.2 is used.
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beﬁ beff

Inner wall Edge wall

Figure 6.2 Effective flange widths for beams used to model wall-floor superstructure

Table 6.2 Effective flange width of the wall

Wall position Effective flange width Deft [m]
Inner wall Deft = tw +12 ts Deft = Lw /3 Deft = Bw
Edge wall Dett = tw+4 ts Deft = Lw /6 Deft = Bw /2

where in Table 6.2 ts [m] is the floor thickness.

6.2.5 Determination of replacement wall height hers

To simulate the wall stiffness on the finite element mesh by using additional beam elements, the
actual properties of the beam elements must be determined. The stiffness of the wall can be
obtained through a replacement beam arranged in the center plane of the plate. The dimensions
of the replacement beam can be taken as shown in Figure 6.3. This can be carried out by
determining firstly the moment of inertia of the effective section of the wall lpp [m4] that
contains two parts, flanges and web. Then, the replacement height of the web hers [m] can be
determined by equating the moment of inertia lpb [m*] to two equivalent moments of inertia. The
first moment of inertia corresponds a rectangular flange lp [m*] while the second corresponds a
rectangular web lw [m?]. The replacement height of the web hers [m] must be higher than the sum
of raft thickness d [m] and clear height of the wall hw [m]. In the finite element model, the wall
and floor flange are represented by beam element has the property of tw [m] and hers [m] while
the raft flange is already included in the plate finite element.
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Figure 6.3 Determination of replacement height hers

6.3  Direct modeling of superstructure-foundation-soil system

To modeling of the superstructure-foundation-soil system, the stiffness matrix for the entire
structure, must be derived from the summation of the stiffness matrices of superstructure,
foundation and subsoil model. So, the three media can be treated as an integral unit. This can be
applied by considering the compatibility of deformations between the superstructure, foundation
and the soil medium, where the superstructure deformation is equal to the foundation
deformation and the soil settlement is equal to the foundation deflection.

The equilibrium equation for the entire structure (superstructure foundation subsoil model) is
written in matrix form as:

[K JU}=1{F} (6.14)

where

[Ki]  Total stiffness matrix for the entire structure

{U}  Vector of nodal displacements for the entire structure
{F}  Vector of external nodal forces for the entire structure

The above system of linear equations can be solved using one of the following methods:

6-10
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C) Gauss elimination method. This method treats the total system of equations of the entire
structure as one unit. Therefore, it requires large computer storage and long computation
time.

d) Substructure technique, where the set of nodal displacements {U} is divided into

boundary displacements common to the superstructure and the supporting soil including
the foundation displacements {Ub} and interior displacements of the superstructure
{Ui}. Corresponding to each of these displacement sets is a set of external forces {Fb}
and {Fi}, respectively. Then, the system of equations can be derived in two partitioned
sets of equations. The boundary displacements {Ub} can be calculated by solving the
first set of equations, then the interior displacements of the superstructure {Ui} can be
obtained by performing back substitution of the internal nodes in which the boundary
displacements {Ub} are already obtained.

e) Iteration method, the iteration method allows less computer storage and short
computation time. The iterative procedure that available in program ELPLA to analysis
of the entire structure as one unit, which developed by Kany/ El Gendy (2000), is
described in the following section.

6.4  Modeling of superstructure foundation soil system by iteration

Most of the methods for analysis of the entire structure as one unit were focused on the
interaction analysis of open framed structures on linear elastic subsoil models. An actual
modeling for structure may also be used, where the columns, walls, slabs and foundation are
modeled as a three dimensional problem using plate element and frame element having six
degrees of freedom at each node comprising three translations (U, v, W) and three rotations (0x, Oy
, 0z). In spite of the success of this method in the analysis of structure, the analysis is time-
consuming and requires large computer capacity. The use of such analysis leads to a great
overall stiffness matrix of the structure. However, in many cases, the effects of some translation
or rotation components may be ignored. For example, a structure carries vertical loading, due to
the in-plane rigidity of the floors and foundation, has rigid body modes of displacements and no
in-plane deformation are expected. That is why the in-plane stress and deformation can be
neglected. In these cases the size of the stiffness matrix of structure will be considerably
reduced, if a reasonable analysis is carried out. An example for this problem may be found in the
analysis of common multi-storey-buildings, where the degree of freedom at nodes of adjacent
substructures is different.

In the raft foundation and floors each node has three degrees of freedom comprising one
translation (W) and two rotations (0x, 0y). In the superstructure components it has two translations
(u, v) in the shear walls, three translations (U, v, W) and three rotations (6x, 0y , 0;) in a space
frame. In the supporting soil it has only one translation (w). One of the advantages of the
iterative procedure of Kany/ El Gendy (2000) is to overcome the incompatibility in the degree of
freedom at the different adjacent substructures by reflecting only the required translations and
rotations during the iteration process. Thus, minimization of the calculation effort will take
place.
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The iterative procedure presents an accurate and rapid method for linear and nonlinear analysis
of foundation supporting multi storey buildings considering the effect of superstructure rigidity.
Using this iterative procedure the computational time is significantly reduced compared with the
traditional analysis of soil-structure problems.

To perform the entire active structure-foundation analysis two computer programs were
developed, one for the analysis of floor and foundation slabs with or without girders, the second
program for the analysis of a space frame. The two programs are standard finite element solution
for plate element and space-beam element types.

6.4.1 Iterative procedure

To describe the iterative procedure, an idealized superstructure containing floor slabs and
columns supported by a raft foundation is considered as a typical example shown in Figure 6.40.
In the procedure the superstructure is partitioned into floor slabs and columns besides the
foundation. The nodes are numbered for each substructure separately. To consider the effect of
superstructure rigidity on the foundation an iterative procedure, Figure 6.4, can be described as
follows:
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Each floor slab is analyzed separately as if it is rigidly attached to the columns
(rotation=displacement=0). Then, the support reactions {R} at the position of the floor
slabs attached to the columns are obtained

{R} ={R,,R,,R,,RM,,RM ,RM, [\, (6.15)

where {R}i is the vector of support reactions of the floor slab at node i attached to the
column; Rx, Ry, Rz, RMx, RMy and RM; are the support forces and moments in X-, Y-
and z-directions at that node.

Support reactions {R} from floor slabs are applied to the columns as external loads.
Analyzing the frame of columns separately under these loads as if it is rigidly attached to
the foundation (rotation=displacement=0). Then, the end reactions of columns {V}
attached to the foundation are obtained

vh={v,,v,,v,,ym WM, VM, [, (6.16)

where {V}i is the vector of support reactions at the column base attached to the
foundation at node i; Vx, Vy, Vz, VMx, VMy and VM; are the support forces and
moments in X-, y- and z-directions at that point.

The end reactions at the column bases {V} are applied to the foundation as external
loads. The foundation is analyzed to obtain the deformations of the foundations {6} at
the column base positions

{8} ={uy vy w,,0,,0, .0, (6.17)

where {0f}i is the vector of deformations of foundation at node i attached to the column
base; ur, vi, Wi, Ox, Oyt and Oz are the displacements and rotations in X-, y- and z-
directions at that point.

The above foundation deformations {6} are used to obtain the foundation rigidity at the
column bases. This is done by determining a set of spring constants {ki} to represent the
foundation stiffness connections

{kf }i ={kuf ’kvf ’kwf ,kexf 7keyf )kezf }Ti

— Vx Vy Vz VMX VMV VMZ T_ (618)
Slu v w0, T 0 0, |

2 2 5

xf yf
where kur, kvi, kwt are transitional spring stiffnesses due to forces in X-, y- and z-
directions. koxt, Koyt and Ke: are rotational spring stiffnesses due to moments in Xx-, y-
and z-directions.

The analysis is performed on frame of columns separately under the previous loads {R}
as if it is resting on elastic supports having the spring constants {ki¢}. Then, the column
deformations {dc} at floor slab positions are obtained
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(8} =fuc.ve.w..0,.0,.0, " (6.19)

where {dc}i is the vector of column deformations at floor slab position at node i; Uc, Ve,
We, Oxc, Oyc and Oz are the displacements and rotations in X-, y- and z-directions at that
point.

(5) The previous column deformations {0c} are used to obtain the column rigidity at the
floor slab positions. This is done by determining a set of spring constants {ks} to
represent the column stiffness connections

{kC}i:{kucakvcakWCakexc,keyc,kezc}Ti
_{ . R, R RM, RM, RMZ}T_ (6.20)
> 0 I

Xc yc zc

where Kuc, kvc, kwe are transitional spring stiffnesses due to forces in X-, y- and z-
directions. Koxc, koyc and Koz are rotational spring stiffnesses due to moments in X-, y-
and z-directions.

The analysis is performed on each floor slab separately as if it is resting on elastic
supports having the spring constants {kc}. Then, the floor slab deformations {ds} at
column positions are obtained

{8, ={u,.v,,w,,0,.0,.0, (6.21)

$?7s? S2YXs?Yys YIS

where {3s}i is the vector of deformations of floor slab attached to column at node i; Us,
Vs, Ws, Oxs, Oys and Ozs are the displacements and rotations in X-, y- and z- directions at
that node. Determination of the new support reactions {R} of the floor slabs attached to
the columns due to elastic supports

(R} = (koo Uy ko Vg Ky W, L K

§S2vC "Ss 2 we

exs > keyc 6ys > kezc exs }Ti

={R,,R,,R,,RM_,RM_,RM_ [,

Oxc

(6.22)

(6) The above foundation deformations {dt} are applied at the column bases. The analysis is
performed on the frame of columns separately under the previous loads {R}. Then the
end reactions of columns {V} attached to the foundation are obtained.

(7) The end reactions at the column bases {V} are applied to the foundation as external
loads. The analysis is performed on the foundation to obtain the deformations of the
foundations {5} at the column base positions.

The steps (4) to (7) have to be repeated until a sufficient compatibility of deformations between
floor slabs and columns and between columns and foundation is reached at the connecting
nodes.
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6.4.2 Nonlinear mathematical soil model

A mathematical model for raft foundation resting on nonlinear soil medium for Winkler’s model
was presented by Baz (1987) and Hasneen (1993). This model is selected here for the analysis of
foundation considering the effect of superstructure rigidity. In the mathematical model, the soil
medium was represented by springs with nonlinear relation between the contact pressure of an
individual spring and corresponding settlement. The model represents the nonlinear behavior of
the contact pressure-settlement at the raft-soil interface by Equation 6.23 analogous to the
hyperbolic function that represents the stress-strain relationship of the soil.

g = (6.23)
+

kt qult

where ¢i [kN/m?] is the contact pressure at node i on the foundation, wi is the soil settlement at
that node, ki [kN/m’] is the initial subgrade reaction and qut [kN/m?] is the ultimate bearing
capacity of the soil.

An extension for the above nonlinear soil medium for Winkler’s model is made in the procedure
to represent the nonlinear behavior of foundation on Continuum model. In this case the initial
subgrade reaction is variable from one node to the other and is obtained from the linear analysis
of foundation on Continuum model, Equation 6.24.

k, = (6.24)

where ki [kKN/m3] is the initial subgrade reaction at node i, Qi [kKN/m2] and wii [m] are the linear
contact pressure and soil settlement at that node respectively.

Now the nonlinear behavior of the soil for both Winkler’s and Continuum models can be
introduced in the previous iterative procedure as follows, Figure 6.5:

- At iteration cycle (j) the nonlinear contact pressure (i at node i is
qi(i) _ kSi(j) Wi(i) (6.25)

where ksi is the modulus of subgrade reaction at node i, and equal to the initial subgrade
reaction ki at the first iteration cycle.

- For the next iteration cycle (j+1) the modulus of subgrade reaction ksi is modified using
Equation 6.23

1
1w,

(j+) _
k1 = = (6.26)

kti qult

These steps have to be repeated until a specified tolerance € between the nonlinear contact
pressure @i calculated from iteration cycle (j) and that of the previous cycle (j-1) is reached.

6-16
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Figure 6.5 Contact pressure-settlement diagram, linear and nonlinear analysis
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Example 6.1: Analysis of a raft for a high rise building
1 Description of the problem

This example was carried out to show the influence of flexure rigidity of the superstructure on
the settlements, contact pressures for a raft of high rise building.

It is required to analysis a raft for the building shown in Figure 6.6 in three simplified sections.
The building is a reinforced concrete skeleton structure consists of a cellar and 13 storeys. The
floor height is 3 [m] while the bay width is 3.6 [m]. The number of bays is 18. The total building
length is 66 [m] while the total width of the cellar basement is 17.55 [m]. The raft thickness is
1.2 [m]. In the following study the raft is analyzed considering subsoil behavior. Also, a
simplification estimation of the superstructure deformations is carried out. In the analysis,
settlements and contact pressures are determined in which a comparison is carried out in four
cases as:

1) For not stiffened raft

i) For compound system raft-cellar

1i1) For compound system raft-cellar-superstructure
iv) For completely rigid raft

The stiffness of the structure system parallel to the long axis can be determined from the data
given in Figures 6.6 and 6.7.

2 Soil properties

According to Figure 6.7, the subsoil layers consist of a sandy clay layer until 11.6 [m] depth
under the ground surface with modulus of compressibility Es = 14 000 [kN/m?]. Under the sandy
clay layer exists in 11.60 [m] depth practically incompressible sandstone rock in great thickness.
The settlement parts from the reloading of the soil are neglected. The foundation level under the
original ground surface is 3.80 [m]. The modulus of compressibility method is used to analysis
of the foundation.

3 Material properties of concrete

The building material is reinforced concrete and has the following properties:

Young’s modulus Eb =2x10’ [kN/m?]
Poisson’s ratio Vb =0.25 [-]
Unit weight b =0.0 [KN/m?]

Unit weight of the concrete is chosen yb = 0.0 to neglect the self-weight of the structure.
4 Loads

According to static calculation of the open frame assuming rigid supports, each column from the
twice 17 columns of the external walls has a column load of 2700 [kN] while each column of the
twice 17 internal columns has a column load of 2500 [kN]. The column load for the four corner
columns is 1350 [kN] while for the four edge columns is 1250 [kN]. The loads with FE-Net of
the raft are shown in Figure 6.8.

6-18
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Figure 6.8 FE-Net of the raft with loads

5 Analysis of the structure
4.5.1 Analysis for not stiffened raft

At first, the settlements and contact pressures are determined under the assumption that except
for the stiffness of the raft itself (thickness d = 1.2 [m]) no other rigidity is effective. So, the
flexure rigidity of the raft K can be obtained from:

Bd®

2 1x10 17.55(1.2)
=2 o

Ke =Eg g =Eg =5.31x10" [kN/m’]

and system rigidity Kst

3 - 3
K, =12 Kszi(i] _ 2110 (16—9 =0.009[-]

14000

The raft is flexible according to Table 6.1, (0.01 > Kst ).
4.5.2 Analysis for the compound system raft-cellar

From the assumption that the raft, the cellar walls and the cellar thickness represent combined
flexure rigidity for the cross section, the cellar system with the raft must be connected rigidly
through satisfied reinforcement. Considering the cross-section shown in Figure 6.7, the height Xs
of the center of gravity of the system cellar-raft is given by:

‘- DR X (17.55x1.2x0.6)+(2x0.5x1.2x1.8)+(0.4x15.7x3.8)

- =1.36
* YF (17.55x1.2)+ (2% 0.5x1.2)+(0.4x15.7) ]

Then, the moment of inertia I of the foundation system according to Steiner’s low is given by:
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3 3
Iy :(%+17.55x1.2x(0.76)ﬂ+2[%+0.5><1.2><(0.44)2j

3
+(%+15.7x 0.4><(2.44)2J =52.54[m"]

The rigidity of the structure Ke is given by:
Ke =Eg lg =2.1x10"x52.4=110.33x10" [kKN/m’]

Then, the ideal raft thickness di is given by:

di:3\/12| :3\/12x52.54:3'3[m]
B 17.55

and system rigidity Kst

3 . ;
K, =12K, =D 4| 2110 (ﬁj =0.1875[-]
E, (L) 14000 66

S

The raft is stiff according to Table 6.1, (0.2 > Kst > 0.1).
4.5.3 Analysis for the compound system raft-cellar-superstructure

In this case the structure system is considered as a raft, caller and superstructure connected
together as one unit. Here, the statical system of the structure may be taken as multi-storey open
frame (13 storeys, 18 bays), which is statically indeterminate. The next calculation shows a
simplification way to estimate the rigidity of the overall structure on the foundation. In the
calculation, it is assumed that only the rigidity of the open panels is taken into consideration
where the contribution of filling walls on the structure rigidity is neglected.

The moment of inertia of the floor I,

According to Beton-Kalender (1957), page 47 or El Behairy (1992), page 17 the moment of
inertia can be obtained from:

Db, 2(03+05) 16

=——=0.102,
b 15.7 15.7
9015 o,
d, 05
1=0.0193

I, =ubd,’ =0.0193x15.7x(0.5) =0.0379[m"]
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Average stiffness of the floor K;

« 1 _0.0379

= =0.01053[m’]

The moment of inertia of the columns I

The columns consist of two internal columns with cross-section of 0.5x0.5 [m] and two external
columns with cross-section of 0.5x0.4 [m].

0.5x0.5° 0.5x0.4°
l,=2 +
12 2

j:0.01575[m4]

Average stiffness of the columns Ks

I .01

K, =FS= 0.01575 =0.005[m’]
Since all floors and columns are supposed to have similar cross-sections, the effective moment
of inertia Is of the multi-storey open frame according to Meyerhof (1953) can be given by:

lg=1.nn’ 2K 0.0379x13x18? 2x0.005

.nonS———s— =77.76[m"]
K, +2K, 0.01053+2x0.005

Flexure rigidity of the superstructure Kg
Kg=Eg Iy =2.1x10" x77.76 =163.29x10” [kN/m’]
Flexure rigidity of the entire structure Ky
K, =Kg +Kg =110.33x10" +163.29x10” =273.62x10" [kN/m’]
The ideal moment of inertia for the entire structure |

7
K _ 273.62x10 ~1303[m‘]

| =—2
E, 2.1x10’

Ideal raft thickness di

q :3\/12| :3\/12><130.3 _ 4.46[m]
B 17.55

and system rigidity K

3 ; 3
ok B[] 21107 (446Y o
14000 | 66
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The raft is very stiff according Table 6.1, (1.0 > Kst > 0.4).
4.5.4 Analysis for completely rigid raft

In this case both the superstructure and foundation are considered as an infinitely rigid structure.
To determine the settlements and contact pressures in this extreme case, the modulus of
compressibility method for the rigid raft is used. This method considers the raft is completely
rigid. Rigid raft means a raft has a thickness of d = oo which also lead to a flexure rigidity of Kc
=0,

Figures 6.9 and 6.10 show the settlements and contact pressures for the four cases of analyses.
The settlements and contact pressures are determined with an ideal raft thickness di.
Furthermore, the results of this example are represented in Table 6.3 in details, so that one can
recognize the differences well.

4.6 Conclusions

This study shows that the results with and without the influence of the structure rigidity are
different from one to other. Besides, the numerical example shows a way to how it can
determine for more complicated structure systems the settlements and contact pressures taking
into account the influence of the structure rigidity.

Table 6.3 Results of structure rigidity for the four different cases of analyses
Moment flexure ideal raft System
o . ) S Grad of
. of inertia rigidity thickness rigidity
Analysis > _ System
I K=Epl di Kst cividit
[m*] [KN/m’] [m] [1] S
Not stiffened 7 Flexible
i 2.53 531 %10 1.20 0.009 0.01 > Kg
Compound Stiff
7
system 52.54 110.33 x 10 3.30 0.1875 02> Ks> 0.1
raft-cellar
Compound
system 130.30 | 273.62 x 107 4.46 0.463 Very stiff
raft-cellar- 1.0 >Kst> 0.4
superstructure
Completely o © © © Rigid
rigid raft Kst= 1.0
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Contact pressures ( [kN/m?] in longitudinal direction at the middle of
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Example 6.2: Verification of the iterative procedure
1 Description of problem

To verify the iterative procedure and evaluate its accuracy, a five-storey building resting on
foundation through 36 columns is considered. The building is composed of five bays in both x-
and y-directions, each bay is 5.0 [m] span. The height of the first storey is 4.0 [m] while the
height of the other storeys is 3 [m]. The typical floor of the five storeys is chosen to be skew
paneled beams as shown in Figure 6.11. The dimensions and loads of floor beams are shown in
Table 6.4. The foundation is a grid type with 0.5 [m] thickness and 2.5 [m] breadth, Figure 6.12.
The columns are square cross sections, the column models and dimensions for each storey are
shown in Table 6.5.

The building material is reinforced concrete and has the following properties:

Young’s modulus Eb =3x107 [KN/m?]
Poisson’s ratio Vb =0.15 [-]
Shear modulus Gp  =1.3x10’ [KN/m?]

The soil mass below the foundation is idealized as Winkler’s medium. The modulus of subgrade
reaction of the soil ks is 40000 [kN/m?].

Table 6.4 Dimensions and loads of floor beams
Dimensions
Beam type Load [kN/m]
Depth [m] Breadth [m]
Exterior beam B1 0.50 0.25 15
Interior beam B2 0.70 0.25 30
Table 6.5 Column models and dimensions
Column dimensions [m>xm]
Storey
Model Cl1 Model C2 Model C3
Ist & 2nd storey 0.40 x 0.40 0.50 x 0.50 0.60 x 0.60
3rd & 4th storey 0.30 x 0.30 0.40 x 0.40 0.50 x 0.50
Sth storey 0.25 x0.25 0.30 x 0.30 0.40 x 0.40
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Figure 6.13  Statical system of space frame with foundation on elastic springs
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2 Analysis

For the comparison between the results of building analysis using the proposed iterative
procedure and that of traditional analysis without iteration, the building is modeled as a space
frame supported by grid foundation resting on elastic springs. The element type for both the
superstructure and foundation is a beam element as shown in Figure 6.13.

For the calculation based on the traditional analysis without iteration, the structure is divided
into 1120 space frame elements yielding 621 nodes. Each node has six degree of freedom. This
generates 3726 simultaneous equations. For the calculation based on the proposed iterative
procedure, the structure is divided into three parts; floors, space frame (columns) and foundation.
The number of elements are 140, 180 and 240, yielding 81, 216 and 216 nodes for floor, space
frame and foundation, respectively. Because the structure subjects to symmetrical vertical
loading, the effect of horizontal loads will be ignored. Therefore the horizontal translations (u,
w) and stresses for the floors and foundation are not considered in the analysis.

For the calculation based on the traditional method, a three-dimensional space frame program is
used to make the analysis of the structure. The horizontal translations and stresses in this case
are ignored by assuming very small cross section areas for the floors and foundation elements.
For the calculation based on the proposed iterative procedure, it is easy to use a two- or three-
dimensional program whenever it is applicable to make the analysis of each part of the structure
separately. A two-dimensional grid program is used to make the analysis of floors or foundation
in order to omit the horizontal translations and stresses, and a three-dimensional space program
is used to make the analysis of columns.

Due to symmetry in shape, dimensions, loading and supporting soil, it is possible to make the
analysis for only one quarter of the structure. However, the analysis is carried out here for the
whole structure, and the conditions of symmetry are used to check the results.

3 Results and discussion
To verify the proposed iterative procedure, the results of deformations at six selected points (a)

to (f) on the foundation are compared in Table 6.6 with those obtained by the traditional method
without iteration.



Theory for the calculation of shallow foundations
Chapter 6 Effect of Superstructure Rigidity on Foundation

Table 6.6 Comparison of deformations at selected points on the foundation obtained
by iteration and those obtained by traditional method without iteration

W [cm] Ox [-] Oy [-]
Point ) ; ) ; ; ;

With Without With Without With Without

iteration iteration iteration iteration iteration iteration

a 0.214 0.213 0.00043 0.00042 -0.00043 -0.00042

b 0.229 0.229 0.00038 0.00037 0.00009 0.00008

c 0.219 0.219 0.00036 0.00035 -0.00003 -0.00003

d 0.308 0.308 -0.00011 -0.00009 0.00011 0.00009

e 0.291 0.291 -0.00011 -0.00009 -0.00004 -0.00003

f 0.269 0.270 0.00004 0.00004 -0.00004 -0.00004

The maximum difference between the vertical translations of floor slabs and columns, and
between those of columns and foundation at attached nodes is considered as an accuracy
number.

W, — W
SW:[ pj><100[%]

where ew is the accuracy number for vertical translation in percentage, We = vertical translation of
column and W is the vertical translation of floor or foundation.

The accuracy number ew is 0.6 [%] for translation after four cycles. It can be concluded from the
comparison that the results of the proposed iterative procedure are in good agreement with those
obtained by the traditional method without iteration with accuracy ew = 0.6 [%] for the whole
structure which yields maximum settlement error 0.47 [%] of the foundation.

The computation time required for the iteration process used in Pentium 100 computer with 64
MB RAM is 39 minutes, while that, required for solving the system of linear equations by the
traditional method without iteration is 6.5 hours. The computation time required for solving the
system of linear equations by the traditional analysis without iteration is 10 times more than
required for the iteration process using the proposed iterative procedure for this example.
Another analysis using the iterative procedure for the same example was carried out using a
plate-beam element program for floors and foundation (see case example 4.2), indicated that the
processing time was 43 minutes. That means, the long computation time for the traditional
method is referred to solving the overall matrix of the complete structure in one time, which
normally, in this case, has large band width.
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Example 6.3: Analysis of structure on nonlinear soil medium
1 Description of problem

An application of the proposed iterative procedure is carried out to study the behavior of
foundation resting on nonlinear soil medium with considering influence of the superstructure
rigidity.

The previous example shown in Figures. 6.11 and 6.12 is also chosen here to show the analysis
of structure on nonlinear soil medium with some modification to be a practical problem.

The floor is chosen to be a slab of 22 [cm] thickness resting on skew paneled beams. The slab
carries a uniform load of 11.8 [kN/m?]. Foundation is considered as a raft foundation with
openings. The dimensions of paneled beams, columns and foundation are the same as those of
the previous example.

2 Soil properties
Two different types of soil models are considered in this case-study:

1) Winkler’s model that represents the subsoil by isolated springs.
i) Layered model that considers the subsoil continuum medium.

The foundation is resting on a soil layer of 10 [m], overlying a rigid base. The soil types are
represented by the modulus of elasticity, Es, for layered model that yields modulus of subgrade
reaction, ks, for Winkler’s model. Table 6.7 shows two different soil types examined in this
study according to the soil properties Es and ks. The two soil types are selected to represent weak
and stiff soil. Poisson’s ratio is taken vs = 0.3 for the two soil types.

Table 6.7 Soil properties for two different soil types

Type of soil ks [kN/m?] Es [kN/m?] Quit [kKN/m?]
Weak soil 4000 18000 200
SGff soil 40000 180000 400
3 Analysis

To show the difference between the results of linear and nonlinear analyses with and without
interaction of superstructure for the two cases of soil models, the foundation is analyzed for both
the two soil types four times as follows:

a) As a plate resting on linear soil medium without the effect of superstructure rigidity.

b) As a plate resting on nonlinear soil medium without the effect of superstructure rigidity.
c) As a plate resting on linear soil medium with the effect of superstructure rigidity.

d) As a plate resting on nonlinear soil medium with the effect of superstructure rigidity.
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The raft foundation is divided into 504 square elements. Each element has the dimension of
1.25[m] x1.25 [m]. The typical floor is divided into 100 square plate elements. Each has
dimensions of 1.0 [m]x1.0 [m] to represent the floor slab. The plate elements are connected with
140 beam elements to represent the skew paneled beams.

For analyzing the foundation without interaction of the superstructure, the loads are obtained
from floor reactions when analyzed as rested on fixed supports, Table 6.8.

Table 6.8 Loads on foundation without interaction of superstructure
Point a b C d e f
Load [kN] 480 1085 975 3000 2630 2270

The initial subgrade reactions ki for the continuum model are obtained from the linear analysis
of foundation on Continuum model using Equation 6.24. For Winkler’s model, the initial
subgrade reaction ki is the same as that of the modulus of subgrade reaction ks.

Because of the symmetry of structure in shape, load geometry and supporting soil about Xx- and
y-axis, only one quarter of the structure is considered in the analysis.

4 Results and discussion

Figures 6.14 to 6.25 show the distribution of settlement, contact pressure and moment at section
I for 16 cases of analysis. In general, it can be noticed from those figures for both models and
types of soil that:

- The settlement values from nonlinear analysis with or without interaction of
superstructure are greater than those obtained from linear analysis at any node on the raft.

- The nonlinear analysis redistributes the contact pressure by decreasing its values under
the columns and increasing the values at fields between columns. This makes the contact
pressure approaches to the average pressure on the raft, especially for weak soil.

- According to the redistribution of the contact pressure on the raft due to nonlinear
analysis, the column moment is increased, while the field moment is decreased.

- The maximum settlement, contact pressure and moment from the analysis with
interaction of superstructure are less than those from the analysis without interaction.
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Figure 6.20  Settlement s [cm] at section I (layered model-weak soil)
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The following Tables 6.9 to 6.12 show the maximum settlement, contact pressure under the
columns, column moments and its differences A.

Table 6.9 Comparison of the maximum settlements max.s
weak soil stiff soil
foundation- ‘ Es = 18000 [kN/m?] Es = 180000 [kN/m?]
analysis of
structure- ) settlements . . . .
interaction | Scttements Winkler’s | Continuum | Winkler’s | Continuum
model model model model
linear Sin [cm] 3.27 3.51 0.45 0.44
~without | poplinear Snl [em] 7.85 8.81 0.62 0.64
interaction
A =100 x (Snl - Sin) / Sin [%] 140 151 38 46
linear Sin [cm] 3.15 3.50 0.41 0.42
- with nonlinear Sni [em] 6.94 7.93 0.54 0.58
interaction
A =100 x (Snl - Sin) / Sin [%] 120 126 32 38
Table 6.10  Comparison of the soil pressure g under the column
weak soil stiff soil
_ 2 _ 2
foundation- ‘ Es = 18000 [kN/m~] Es = 180000 [kN/m~]
analysis of .
structure- Soil pressure
interaction | Scttlements Winkler’s | Continuum | Winkler’s | Continuum
model model model model
linear Qin [kKN/m?] 131 126 182 310
~ without nonlinear | Gni [kN/m?] 122 122 152 212
interaction
A = 100%(gni - qin) / Afin [%0] -7 -3 -17 -32
Linear Qin [KN/m?] 126 119 163 276
- with nonlinear | Gnt [KN/m?] 115 114 139 196
Interaction
A =100%(qnt - qin) / Afin [%0] -9 -4 -15 -29
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Table 6.11 Comparison of the column moment mx
weak soil stiff soil
foundation- ' Es = 18000 [kN/m?] Es = 180000 [kN/m?]
analysis of Column-
structure-
interaction settlements moments Winkler’s | Continuum | Winkler’s | Continuum
model model model model
linear Min [kKN.m/m] 725 742 609 557
_without | ponlinear | mui [kN.m/m] 812 836 638 613
interaction
A = 100*(mni - Min)/ Min [%] 12 13 5 10
linear Min [KN.m/m] 554 558 528 490
. Wlth. nonlinear | mn [kN.m/m] 587 596 538 517
interaction
A =100*(mni - min)/ Min [%] 6 7 2 6
Table 6.12  Comparison of the field moment mx
weak soil stiff soil
_ 2 _ 2
foundation- ' . Es = 18000 [kN/m~] Es = 180000 [kN/m~]
analysis of Field-
structure-
interaction settlements moments Winkler’s | Continuum | Winkler’s | Continuum
model model model model
linear Min [kKN.m/m] -184 -161 -162 -136
 without ' yonlinear | my [kN.m/m] | 3.84 62 -178 -157
interaction
A= IOOX(mnI - mln)/ Min [%] 102 139 10 15
linear Min [kN.m/m] -125 -104 -153 -128
| with, nonlinear | mn [kN.m/m)] 22 74 -159 -138
interaction
A =100%(mMn1 - Min)/ Min [%] 118 171 4 9

Besides the above notes, the following results are reported (results are written without brackets
for Winkler’s model, while in brackets () for Continuum model):

Settlement (Table 6.9)

The maximum nonlinear settlement for weak soil exceeds maximum linear settlement by 140
[%] (151 [%]) and 120 [%] (126 [%]) for the analysis with and without interaction of
superstructure, respectively, while for stiff soil by 38 [%] (46 [%]) and 32 [%] (38 [%]).
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For both weak and stiff soil, the ratio between the maximum settlement from the analysis with
interaction and that without interaction of superstructure is about 0.94 (0.97) for linear analysis,
while this ratio decreases to 0.90 (0.90) for nonlinear analysis.

Contact pressure (Table 6.10)

The linear contact pressure for weak soil exceeds nonlinear contact pressure under the column
by 8 [%] (4 [%]) for both analyzes with and without interaction of superstructure, while for stiff
soil by 16 [%] (31 [%]).

It is obvious that the contact pressure distribution patterns for Winkler’s model and Continuum
model are not the same. The contact pressure under the columns for Continuum model are more
than those of Winkler’s model by ratio of 1.7 for stiff soil. On the contrary to the case of stiff
soil, this ratio is reduced to 0.95 for weak soil.

Moments (Tables 6.11 and 6.12)

For stiff soil, using either linear or nonlinear analysis the values of column moments are nearly
the same. The difference between nonlinear and linear column moments does not exceed 5 [%]
(10 [%]) and 2 [%] (6 [%]) for the analysis with and without interaction of superstructure
respectively. This difference is slightly increased for field moments to 10 [%] (15 [%]) and 4
[7%] (O [%]).

For weak soil, there is also no significant change between linear and nonlinear column moments.
But for field moments the difference between nonlinear and linear is 102 [%] (139 [%]) and 118
[%] (171 [%]) for the analysis with and without interaction of superstructure respectively. The
results at section I also show that the field moment has changed from negative to positive at
fields between columns due to the nonlinear analysis of the foundation.
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7.1 Nonlinear analysis of foundations for simple assumption model
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7.1.1 Introduction

The simplest model for determination of the contact pressure under the foundation assumes a
planar distribution of contact pressure on the bottom of the foundation (statically determined). In
which the resultant of soil reactions coincides with the resultant of applied loads. If all contact
pressures are compression, the foundation system will be considered as linear and the contact
pressures in this case is given directly by the following well-known formula:

N M, I -M.I, M. -M1I

g, =—+ X =y, (7.1)
A, I.1,-1, I.1,-1,
where:
N Sum of vertical applied loads on the foundation [KN]
qi Contact pressure at node i [kN/m?]
Xi Coordinate of node i from the centroidal axis x [m]
Vi Coordinate of node i from the centroidal axis y [m]
Ay Foundation area [m?]
M Moment due to N about the x-axis [kN.m]
M, Moment due to N about the y-axis [kN.m]
Ix Moment of inertia of the foundation area about the x-axis [m*]
I, Moment of inertia of the foundation area about the y-axis [m?]
Ly Product of inertia [m*]

If the foundation subjects to big eccentricity, there will be negative contact pressures on some
nodes on the foundation. Since the soil cannot resist negative stress, the foundation system
becomes nonlinear and a resolution must be carried out to find the nonlinear contact pressures.
The nonlinear analysis of foundation for the simple assumption model has been treated by many
authors since a long time, where several analytical and graphical methods were available for the
solution of this problem.

Pohl (1918) presented a table to determine the maximum corner pressure max go for arbitrary
positions of the resultant N. Hiilsdiinker (1964) developed a diagram using the numerical values
of this table from Pohl (1918) to determine the maximum corner pressure max ¢o. For one corner
detached footing, the closed form formulae cannot be used. Therefore, Pohl (1918) and Mohr
(1918) proposed a method to estimate the neutral axis through the trial and error. Besides tables
and diagrams, Grafhoff (1978) introduced also influence line charts can be used to determine
the contact pressure ordinates.

Peck/ Hanson/ Thornburn (1974) indicated a trial and error method to obtain the neutral axis
position for rectangular footing subjected to moments about both axes. Jarquio/ Jarquio (1983)
proposed a direct method of proportioning a rectangular footing area subjected to biaxial
bending. Irles/ Irles (1994) presented an analytical solution for rectangular footings with biaxial
bending, which will lead to obtain explicit solutions for the corner pressures and neutral axis
location.

The determination of the actual contact area and the maximum corner pressure max ¢o under
eccentric loaded foundation with irregular shape is very important. For T-shape foundation that
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is loaded eccentrically in the symmetry axis, Kirschbaum (1970) derived formulae to determine
the maximum corner pressure max go. For some foundation areas with polygonal boundaries,
Dimitrov (1977) gave formulae to determine the foundation kern and corner pressure max go.
For the same purpose, Miklos (1964) developed diagrams. For general cases of foundation,
Opladen (1958) presented graphical procedure.

Most of the analytical methods used to determine the contact area and corner pressures for
eccentric loaded foundations are focused on regular foundations where irregular foundations can
be analyzed only by graphical procedures. In this paper, an iteration procedure is presented to
deal with nonlinear analysis of foundations for simple assumption model. The procedure can be
applied for any arbitrary foundation shape and is suitable for computer programs. The following
section describes this procedure.

7.1.2 Description of the procedure

In the procedure, the foundation is divided into rectangular finite elements. It is assumed that the
contact pressure g:; can be replaced by equivalent force Q: at the various nodal points. Consider
the foundation shown in Figure 7.1 subjected to a big eccentricity. Then, the vector of contact
pressures {Q}° obtained from the first analysis will contain some nodes with negative contact
pressures. This vector can be rewritten in a form of separation vectors as:

0" =lo,}"+{o.)" (7.2)
where:
{Op}© Vector of positive contact pressures from the first analysis.
{On}© Vector of negative contact pressures from the first analysis.

Now, instead of negative soil reactions {Q.}® on the separation zone, equivalent reactions
{AQ} over all foundation are to be found. This is achieved out in such a way that the resultant
of soil reactions should equal and on the same line of action of the resultant of external loads.
The iteration process to eliminate negative soil pressures for simple assumption model can be

described in the following steps:

i- A new set of loads on the foundation are assumed where the vector {Qn}©
represents these external applied loads at the same nodes.

ii- Then, the vector {AQ}© can be determined as the new soil reactions due to these
applied loads using Equation 7.1.

1ii- The vector {AQ}© is added to the vector of positive contact pressures {QOp}
to obtain the vector of redistributed contact pressures {Q}(" as:

0" ={o, 1+ (a0} (7.3)

If new negative contact pressures appear, the above steps are repeated again until negative
contact pressures no longer appear. Figure 7.1 shows the iteration cycle of the iteration process.
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Figure 7.1 Iteration cycle of the iteration process
7.2 Nonlinear analysis of foundations for Winkler's and Continuum models
7.2.1 Introduction
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If the foundation carries heavy loads, there will be contact pressures on some nodes on the
foundation much higher than the ultimate bearing capacity of the soil gur. Since the soil cannot
resist such high pressure, the foundation system becomes nonlinear and a resolution must be
carried out to find the nonlinear contact pressures. The nonlinear analysis of this problem for
Continuum model was recorded by many authors, for example Biedermann (1981) and Stark/
Majer (1988). These methods based on specifying the maximum permissible contact pressure ¢
in an iterative process during the analysis. The value of ¢* is usually expressed as a proportion of
the average applied pressure go on the foundation. Typically 2¢go < ¢° < 3 ¢o in practical
applications. The first step in the analysis is to define the nodes that remain “elastic” and that
become “plastic” Because the contact pressures of plastic nodes exceed the specified limit ¢, all
the contact pressures in these nodes are reduced to g°. Then, the foundation is analyzed again to
obtain the modified contact pressures on the elastic nodes. If the new results show that the
specified maximum contact pressure is exceeded at further nodes, then the entire procedure is
repeated until convergence is reached.

A more realistic mathematical model for raft resting on nonlinear soil medium for Winkler’s
model was presented by Baz (1987) and Hasnien (1993). In the mathematical model, the soil
medium was represented by springs with nonlinear relation between the contact pressure of an
individual spring and corresponding settlement. The model represents the nonlinear behavior of
the contact pressure settlement at the raft soil interface by equation analogous to the hyperbolic
function that represents the stress strain relationship of the soil.

Kany/ El Gendy (2000) developed this model for the analysis of foundation taking the effect of
superstructure rigidity into account. In which, an extension for the nonlinear soil medium for
Winkler’s model is made to represent the nonlinear behavior of elastic foundation on Continuum
medium. In this case, the initial subgrade reaction is variable from one node to other and is
obtained from the linear analysis of elastic foundation on Continuum medium.

In this study, a further extension for the above nonlinear soil medium for elastic foundation on
Continuum medium is made to represent the nonlinear behavior of rigid foundation on
Continuum medium. Also, an efficient method is presented to eliminate the negative contact
pressures for elastic and rigid foundations on Continuum medium.

7.2.2 Description of the procedure

Elastoplastic analysis

The nonlinear analysis (Elastoplastic) for both Winkler’s and Continuum models based on a
hyperbolic relation between contact pressures g: and settlements s, which is given by:

q; = T (7.4)
kt qult
where:
qi Contact pressure at node [KN/m?]
Si Soil settlement at node i [cm]
ke Initial subgrade reaction [KN/m?]
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qu:  Ultimate bearing capacity of the soil [KN/m?]

The unknown parameters in Equation 7.4 are contact pressures ¢i and settlements s.. The initial
subgrade reaction k: for Winkler’s model is given for the problem and may be obtained directly
from the elastic parameter of the soil. For either elastic or rigid foundation on Continuum
medium, the initial subgrade reaction 4: is variable over all nodes and is obtained from the linear
analysis of the problem as:

k, =2 (7.5)
Sii
wobei:
ki Initial subgrade reaction at node i [KN/m?]
Sti Soil settlement at node i from linear analysis [m]
qii Contact pressure at node i from linear analysis [KN/m?]

The ultimate bearing capacity of the soil g in Equation 7.4 can be determined from Equation
7.6 according to DIN 4017 (1979).

G =¢N. Vv +v,t, N,v,+v, BN, v, (7.6)
wobei:
tr Level of foundation under the ground surface [m]
[0) Angle of internal friction of the soil [°]
c Cohesion of the soil [KN/m?]
Y1 Unit weight of the soil above the foundation level [KN/m?]
Y2 Unit weight of the soil under the foundation level [KN/m?]
B Foundation width [m]
A Foundation length [m]
Ne, Na, Np Bearing capacity factors [-]

Na = e "9 tan® (45 + ¢ / 2)
Ne=(Na-1) cot ¢
Np=(Na-1)tan ¢
Ve, Vd, Vb Foundation shape factors [-]
va=1+(B/A)sino
w=1-03(B/A)
Ve =(Vda Na- 1)/ (Na- 1)

For multi-soil system consists of »n layers under the foundation level (Figure 7.2), the mean
values of the soil constants ¢m, cm and ym are determined by weighing the soil constant of the
layer thickness 4: from n layers, in which the mean average values are given by:

n

i(pm hi icm hi yi hi
i=1 _ =l 1

9, = C, und vy, =—— (7.7)

Zn: hi Zn: h i Z hi
i=l i=l

i=1

Here, a depth of the slide shape max Ts under the foundation dependent on ¢m is considered.
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Therefore, an iteration process is necessary. The iteration is repeated until the difference
between the angle of internal friction which is determined from the iteration cycle i and that of
the pervious cycle i-1 is less than 0.1 [°]. According to DIN 4017 [17], the mean values of the
soil constants are only accepted, if the internal friction for each individual layer ¢:; does not
exceed the average value of the internal friction @av by 5 [°].

Ground

i

Layer (1) Y1,91,¢ h

Layer \ / Y2,92,C / By | max Ts
Layer (3) ‘\%%(/ h

Figure 7.2 Ultimate bearing capacity for multi-layers system

For subsoil defined by number of boring logs, an interpolation among the ultimate bearing
capacities of the boring logs may be carried out to take into account the irregularity of the soil in
x-and y-directions.

Now the nonlinear behavior of the soil for both Winkler’s and Continuum models can be carried
out as follows (Figure 7.3):

- At an iteration cycle (j) the nonlinear contact pressure g; at node i is

qi(j) =k (J) S.(j) (78)

N 1

where ki 1s the modulus of subgrade reaction at node i, and equal to the initial subgrade
reaction kx at the first iteration cycle 1.

- For the next iteration cycle (j+1) the modulus of subgrade reaction ks is modified using
Equation 7.9.

ST 79
kti qult

These steps have to be repeated until a specified tolerance ¢ between the nonlinear contact
pressure g: calculated from an iteration cycle () and that of the previous cycle (j-1) is reached.
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Figure 7.3 Nonlinear analysis procedure

Foundation separation analysis

In many cases for both elastic and elastoplastic analyses, the results of foundation on either
Winkler’s medium or Continuum medium include negative contact pressures. In practice, this
means a separation between the foundation and the soil occurs. Therefore, it becomes necessary
to continue the analysis to ensure that separation is allowed to occur, and that no contact
pressures at the separation zone.

For Winkler’s model, it is easy to eliminate the negative contact pressures by deleting the
corresponding modulus of subgrade reaction ks at nodes that have negative pressures. Then, the
analysis is repeated until negative contact pressures no longer appear.

For elastic foundation on Continuum medium, Cheung/ Nag (1968) introduced an iterative
procedure to eliminate the appropriate rows and columns in the flexibility matrix [c] and the
solution is repeated using the modified stiffness matrix [ks] until all contact pressures are
compressive or zero. Thus the problem remains elastic but becomes nonlinear, as the
compressive contact pressures are unknown. £/ Gendy (1994) had applied the same procedure of
Cheung/ Nag (1968) to rigid rafts on Continuum medium.

In this study, an efficient alternative method to eliminate the negative contact pressures is
presented. The treatment of raft separation for either elastic or rigid raft on Continuum medium
is similar to elastoplastic analysis. From the first analysis of the raft, the stiffness of the soil may
be represented by individual springs of variable stiffness ks through the known contact pressures
and corresponding settlements. Then, it is easy to eliminate the negative contact pressures by
deleting the soil stiffness ks at the separated nodes. Then, the analysis of the raft on individual
springs is repeated until negative contact pressures no longer appear.

As described before, in the nonlinear analysis (Elastoplastic and raft separation) for either elastic
or rigid raft on Continuum medium, the subsoil on the nodes of the finite elements is represented
by individual springs. Therefore, the system of linear equations in each iteration cycle is solved
more efficiently as the soil stiffness matrix is a diagonal matrix, which in its original form is a

7-8



Theory for the calculation of shallow foundations
Chapter 7 Nonlinear Analysis of Foundations

full matrix. The solution is iterative, but convergence is usually rapid.
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Example 7.1 Verification of nonlinear analysis for Winkler’s model

1 Description of the problem

To verify the nonlinear analysis of the program ELPLA for Winkler’s soil model, the results of a
square footing resting on elastic springs obtained through nonlinear analysis by Hasnien (1993)
are compared with those obtained by the program ELPLA.

A flexible square footing of 0.12 [m] thickness has the dimensions of 2 [m]x2 [m] was
considered as shown in Figure 7.4.

1000 [kN]
a
S I Loading case a)
250 [kN/m?]
o j
S MWWMW\WMN%W >~ Loading case b)
Assumed influenced area borders
B 3.0 [m] N
T I}
v
S
(]
o <
on
Footing
W
)
1 ¥
f 05 T 20 T 05 1

Figure 7.4 Footing geometry and loading
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2 Soil properties

The soil under the footing has modulus of subgrade reaction ks = 30000 [kN/m?] and ultimate
bearing capacity qur = 600 [kKN/m?].

3 Footing material
The footing material has the following parameters:

Young’s modulus  Ep=1.4 x 107 [kKN/m?]

Poisson’s ratio vb=0.15 [-]
Unit weight vb=25 [KN/m?]
4 Analysis

Two cases of loading are studied:

a) The footing carries a concentrated load of 1000 [kN]
b) The footing carries a uniform load of 250 [KN/m?]

To study the soil settlements outside the footing borders due to nonlinear analysis, an imaginary
surrounding elements of thickness 0.001 [m] are assumed to be around the footing. The footing
and surrounding elements were subdivided into 144 square elements, each element has
dimensions of 0.25 [m] % 0.25 [m].

5 Comparison
Tables 7.1 and 7.2 compare the results of settlements s, contact pressures ¢ and moments m; at
the center of the footing obtained by Hasnien (1993) with those obtained by ELPLA. From these

table it can be seen that the results of both analyses are in good agreement.

Table 7.1 Comparison of the results at the center of the footing obtained by Hasnien (1993)
with those obtained by ELPLA (The footing carries a concentrated load of 1000

[kN])
Item Type of analysis Hasnien (1993) ELPLA

Settlement Linear analysis 1.78 1.85
s [em] Nonlinear analysis 2.55 2.58
Contact Linear analysis 535 556

pressure ¢
[kN/m?] Nonlinear analysis 337 338
Morment Linear analysis 213 272
myx [kKN.m/m] Nonlinear analysis 229 293
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Table 7.2 Comparison of the results at the center of the footing obtained by Hasnien (1993)
with those obtained by ELPLA (The footing carries a uniform load of 250

[kN/m?])
Item Type of analysis Hasnien (1993) ELPLA

Linear analysis 0.78 0.81

Settlement
s [em] Nonlinear analysis 1.18 1.18
Contact Linear analysis 232 242

pressure ¢
[kN/m?] Nonlinear analysis 222 223

Moment Linear analysis 12 9

myx [kKN.m/m] Nonlinear analysis 13 12
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Example 7.2 Rectangular foundation subjected to eccentric loading
1 Description of the problem

For comparison with complex foundation shape, no analytical solution is yet available.
Therefore, for judgment on the nonlinear analysis of foundations for simple assumption model,
consider the rectangular foundation shown in Figure 7.5. The foundation has the length L = 8.0
[m] and the width B = 6.0 [m]. The foundation carries an eccentric load of N = 2000 [kN]. Both
of the x-axis and y-axis are main axes, which intersect in the center of gravity of the foundation
area s. The position of resultant N is defined by the ordinates x = ex and y = e,. Within the
rectangle foundation area five zones are represented. It is found that, the contact area and
maximum corner pressure max ¢qo depending on the position of the resultant N in these five
zones (Irles/ Irles (1994)). In this example, the maximum corner pressure max go is obtained
using the program ELPLA for each zone and compared with other analytical salutations, which
are available for rectangular foundation.

L/4 | L4
| |
| ex

@ @
B/4 (5) T
L —3) — _Sl@i .N 3 o _IB/6 B

<

B4 | 2

X
5) &)
> T
L/6
»
L
Figure 7.5 Division of the rectangular foundation in five
zones according to the position of the resultant N

2 Hand calculation of the maximum corner pressure max go

The maximum corner pressure max go for the zone (1) can be obtained directly using Equation
7.1, where in this case the Resultant V lies in the foundation kern and no separation will occur.
The maximum corner pressure max qo for the other four zones can be obtained using available
analytical solutions according Irles/ Irles (1994), Teng (1962) and Grafshoff/ Kany (1997) as
follows:

Zone (2)
Three corners detached (ex = 3.0 [m], ey = 2.25 [m])

The maximum corner pressure max go for zone (2), Figure 7.6a, can be given according to Irles/
Irles (1994) from the following equation:
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3N

2(L-2e¢,)(B-2¢,)
3% 2000

2(8-2x3)(6-2x2.25)

max ¢, =

=1000[kN/m*]

max g, =

Zone (3)
Two corners detached (ex = 3.0 [m], ey = 0.0 [m])

The maximum corner pressure max qo for zone (3), Figure 7.6b, can be given according to Teng
(1962) from the following equation:

N{( 4L
maxgq, =—/ | ———
LB\3L-6e,

2000 4x8
8x6\3x8—6x%3

max g, = J =222.22[kN/m’]

Zone (4)
Two corners detached (ex = 1.0 [m], ey = 2.25 [m])

The maximum corner pressure max qo for zone (4), Figure 7.6¢, can be given according to
Grafhoffl Kany (1997) from the following equation:

2 2
,:£(£+ %_12}3(8 L8 —12}:10.141[m]

12\ e, \e, 12(1.0 V102
tanB:; B-2e, 23(6—2x2.25j=0.202
2\ t+e, ) 2\10.141+1.0

12N L+2t 12x2000 8+2x10.141
LtanP I’ +12¢£° 8x0.202 8 +12x10.141°

max g, = =323.58[kN/m’]

Zone (5)
Only one corner detached (ex = 1.0 [m], ey = 0.75 [m])

The maximum corner pressure max qo for zone (5), Figure 7.6d, can be given according to
Grafhoffl Kany (1997) from the following equation:

K=3+e—y=£+w=0.25
L B 8 6
maxqo:%K[12-3.9(6K—l)(1—2K)(2.3—2K)]

max ¢, = %K [12-3.9(6x0.25-1)(1-2x0.25)(2.3-2x0.25)]

max ¢, =106.72[kN/m’]
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Figure 7.6 Resultant N lies in the four zones (2) to (5)
3 Determination of the maximum corner pressure max qo by the program ELPLA

To achieve the comparison between the maximum corner pressure max go obtained from the
program ELPLA and that obtained from the other available analytical solutions described above,
the rectangular foundation is subdivided into refine mesh of square finite elements. Each
element has a side of 0.1 [m]. The results obtained from the program ELPLA are compared with
those obtained above in Table 7.3. It shows that the results of both the analytical and iteration

methods are in a good agreement.

Table 7.3 Comparison between the maximum corner pressure max ¢o [kKN/m?] obtained
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from program ELPLA and that obtained from the available analytical solutions.

Zone No. Zone (2) Zone (3) Zone (4) Zone (5)
Available Irles/ Irles (1994) | Teng (1962) Grafhoff/ Kany (1997)
solutions 1000 222 324 107
ELPLA 1017 223 325 106
Difference [%] 1.67 0.45 0.31 0.94
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Example 7.3 Circular foundation subjected to eccentric loading

1 Description of the problem

Another example is considered to show the applicability of nonlinear analysis of foundations
using the program ELPLA for simple assumption model to different foundation types. The
results of nonlinear analysis for a circular raft calculated by Teng (1962) are compared with

those obtained by the program ELPLA.

A circular raft of radius » = 5 [m] is considered as shown in Figure 7.7. The raft carries an
eccentric load of N =2000 [kN]. The position of the resultant N is defined by the ordinate e.
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Figure 7.7 Plan of the circular raft with dimensions and FE-Net

2 Analysis
2.1  Simple assumption model

To carry out the comparison, the raft is subdivided into 1238 square elements. Each element has
a side of 0.25 [m]. The contact pressures ¢ under the middle of the raft are obtained in Figure 7.8

at different ratios e/r, which shows also the separation zones. The ratio e/r ranges from 0.25 to
0.75.
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Figure 7.8 Contact pressures g [kN/m?] under the circular raft at different values of e/r
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The coefficient k = max go m ¥*/N at different ratios e/r obtained from the program ELPLA are
plotted and compared with those obtained by Teng (1962) in Figure 7.9. It can be concluded
from this figure that the results of nonlinear analysis of the circular raft using the program
ELPLA and those of Teng (1962) are in a good agreement.
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Figure 7.9 Coefficient k = max qom r*/N at different ratios e/r
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2.2  Rigid raft on Continuum medium

Although it is easy to drive closed form equations for raft separation in case of regular rafts for
simple assumption model, but it is difficult to drive such equations for circular rigid rafts. For
this reason, the same circular raft is analyzed again for rigid raft on Continuum medium to show
the applicability of the nonlinear analysis of foundations using the program ELPLA for different
soil models. The subsoil under the raft is chosen to be a layer of sand, which has the following
parameters:

Modulus of compressibility Es=12 000 [kN/m?]
Poisson’s ratio vs=0.25 [-]
Layer depth z=10 [m]

The kern of the circular raft, in which no separation occurs when the resultant N lies in it, takes a
radius 7/4 in case of simple assumption model, while in case of rigid raft on Continuum medium
takes a radius /3. Therefore, the rigid raft is analyzed for different ratios e/r from 0.35 to 0.75.
Figure 7.10 shows the contact pressures ¢ under the raft at different values of e/r, while Figure
7.11 shows the settlements s.

x [m]
0.0 2.0 4.0 6.0 8.0 10.0
0 1 I ‘ 11 ‘ 1 I ~ I\ 1 ‘ [ 1 ‘ I 1 ‘ | [ [ Il ‘ 1 L Ll ‘
i elr=0.35
R
< .
< 100
e |
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§ B
a 1 -
5 200 - elr
3 1
= ]
1S 1
Q |
300 -

Figure 7.10  Contact pressures ¢ [kN/m?] under rigid circular raft at different values of e/r

A comparison between Figure 7.8 and Figure 7.10 shows that the effective contact area for the
raft in case of simple assumption model is less than that of rigid raft on Continuum medium at
the same corresponding ratio e/r. The effective contact area and effective width may be used to
determine the ultimate load for the foundation, which carries eccentric loading. Figure 7.11
shows that the separation zones have upward settlements.

The effective contact width c for the circular raft is given in a non-dimensional form in Figure
7.12. Depending on the nature of the load eccentricity and the radius of the raft, once the
magnitudes of the effective width and the effective area are determined, they can be used in
Equation 7.6 to determine the ultimate load of the raft.
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Figure 7.11  Settlements s [cm] under rigid circular raft at different values of e/r
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Figure 7.12  Diagram to determine the contact width c of the circular raft by eccentric loading
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Example 7.4 Elastoplastic analysis of a raft resting on Continuum medium
1 Description of the problem

One of the difficulties by applying the Continuum model to practical problems is the appearance
of the high contact pressures at the raft edges, especially when the raft carries heavy loads. The
appearance of plastic zones at the raft edges related to the traditional mathematical soil models
used in the analysis, which depend on the theory of elasticity. Therefore, an application example
is carried out to show the applicability of the developed nonlinear analysis to redistribute the
high contact pressures at the edges of both elastic and rigid rafts.

A rectangular raft has the dimensions of 8x16 [m?] is chosen and subdivided into 512 square
elements. Each element has a side of 0.5 [m] as shown in Figure 7.13. The raft carries a uniform
load of 600 [kN/m?].

p = 600 [KN/m?]
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Figure 7.13  Raft geometry, loading and FE-Net

2 Soil properties

The raft rests on a homogeneous sand layer of thickness 10 [m], overlying a rigid base. The sand
layer was supposed to have the following parameters:

Modulus of compressibility E,=12000 [kN/m’]
Poisson’s ratio vs=0.25 [-]
Unit weight vs=17.5 [KN/m’]
Angel of internal friction ¢0=27.5 [°]
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Cohesion c=0.0 [kN/m?]

Foundation depth under the ground surface #= 0.5 [m]

3 Raft material and thickness

The raft material and thickness were supposed to have the following parameters:

Raft thickness d=0.5 [m]
Young's modulus ~ E»=3x 107 [kN/m?]
Poisson’s ratio vp=0.15 [-]

Unit weight v5=0.0 [KN/m?]

Unit weight of the raft is chosen yo= 0.0 [kKN/m®] to neglect the self-weight of the raft
4 Analysis

The nonlinear analysis of the raft was carried out for both elastic and rigid rafts on Continuum
medium. Two cases concerning the ultimate bearing capacity qu: are considered as follows:

1) The ultimate bearing capacity gu: is uniform. Its value is obtained from Equation 7.6, qui
= 1603 [kN/m?].

i1) The ultimate bearing capacity qur is variable. The ultimate bearing capacity qui at the raft
edges is determined from the second term of Equation 7.6, qur = y1 ty Na va = 951
[KN/m?], while the ultimate bearing capacity qu: at the raft center is determined from
Equation 7.6 when the third term is doubled, qur = y1 #t Na va + 2 y2 B Np vo = 1753
[KN/m?]. Figure 7.14 shows the contour lines of the variable ultimate bearing capacity

qult.
B3 (0.0, a B4 (16.0,
G\'K ./'$
S 8
on O
4 —%
B1 (0.0, a B2 (16.0, 0.0)

Figure 7.14  Contour lines of the variable ultimate bearing capacity qui [kKN/m?]
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Unfortunately until now, there is no available method to determine the bearing capacity of the
soil for irregular contact pressure, where the bearing capacity equations are derived for a
uniform contact pressure under the foundation. In this example, the variability of gur under the
raft is chosen according to the principle of equilibrium forces acting on the raft and the soil at
the failure. In which, the part of ultimate bearing capacity from the second terms in Equation 7.6
is uniform. This part represents the influence of the applied pressure beside the foundation, yi #
Na va. The part of ultimate bearing capacity from the third term in Equation 7.6 has a triangle
cross-section at the middle of the raft (Figure 7.15). This part represents the influence of the
foundation geometry, y2 B Nb vs.

Y1 tr Na vd Y1 ¢ Nava

ul
1 t'YZBNdV

2y2 B Nava

Figure 7.15  Ultimate bearing capacity at the soil failure (section a-a)

5 Results and discussions

The contact pressures g at section a-a of the raft in case of uniform qur are shown in Figures
7.16 and 7.17, while those in case of variable qur are shown in Figures 7.18 and 7.19. These
figures show that, the linear analysis of the both elastic and rigid rafts gives high contact
pressures at the raft edges. As it is expected due to the nonlinear analysis, the contact pressures
shift from the edges to the center of the raft, and leads to loss of the bearing capacity. Figures
7.16 and 7.17, which represent case of uniform g.: show that although the contact pressures over
all nodes on the raft are less than the ultimate bearing capacity limit, but the contact pressures at
the raft edges still higher than those at the center. In contrast for case of variable guir the contact
pressures take a form similar in shape to the limit line of gu: (Figures 7.18 and 7.19).
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Figure 7.16  Contact pressures ¢ [kKN/m?] at section a-a with and without limitation
(Elastic raft - uniform ultimate bearing capacity)
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Figure 7.17  Contact pressures ¢ [kKN/m?] at section a-a with and without limitation
(Rigid raft - uniform ultimate bearing capacity)



Theory for the calculation of shallow foundations
Chapter 7 Nonlinear Analysis of Foundations

y [m]

0.0 2.0 4.0 6.0 8.0
O | \. | ‘. | \. | ‘. | \. | ‘. | \. | ~. | \. | ‘. | \. | ‘. | \. | ‘. | \. | \——‘b—
P P Y1 tr Na vd

4 i 1| — Nonlinear analysis Ny .
————— Linear analysis

2y2 B Na

Contact pressures g [kN/m?]

#1"Limit line of

1600‘;c0ntact pr_ess_urq.....g, l
E AT = = o e o = |
0 B

2000~ =

Figure 7.18  Contact pressures ¢ [KN/m?] at section a-a with and without limitation
(Elastic raft - variable ultimate bearing capacity)
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The effect of redistribution of contact pressures on the moments my at section a-a of the raft is
indicated in Figure 7.20 for case of uniform qur and in Figure 7.21 for case of variable quir. The
Figures show that due to the redistribution of the contact pressures under the raft, the moments are
considerably changed. In case of variable g, not only the moments are changed but also the sign of
moments. In case of uniform gu,, the maximum moment my is reduced to 81 [%], while that in case

of variable qu is reduced to more than double.

Moment m, [kN.m/m]

Figure 7.20
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Figure 7.21  Moment my [kKN.m/m] at section a-a with and without limitation
(Elastic raft - variable ultimate bearing capacity)
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Chapter 8

Soil Properties and Parameters
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8.1 Poisson’s ratio vs
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Poisson’s ratio vs for a soil is defined as the ratio of lateral strain to longitudinal strain. It can be
evaluated from the Triaxial test. Here, Poisson’s ratio vs can be determined from at-rest earth
pressure coefficient Ko as follows:

v, = 1+KK (8.1)

Some typical values for the Poisson’s ratio are shown in Table 8.1 according to Bowles (1977).
Poisson’s ratio in general ranges between 0 to 0.5.

Table 8.1 Typical range of values for Poisson’s ratio vs according to Bowles (1977)
. Poisson’s ratio
Type of soil

Vs [-]
Clay, saturated 04-0.5
Clay, unsaturated 0.1-0.3
Sandy clay 0.2-0.3
Silt 0.3-0.35
Sand, dense 02-04
Sand, coarse (void ratio = 0.4 - 0.7) 0.15
Sand, fine grained (void ratio = 0.4 - 0.7) 0.25
Rock 0.1-0.4

8.2  Moduli of compressibility Es and Ws and unit weight of the soil ys

The equations derived in chapter 1 for calculation of flexibility coefficients require either the moduli
of compressibility for loading Es and reloading Ws or moduli of elasticity for loading E and
reloading W for the soil. The yielding of the soil is described by these elastic moduli. The moduli of
compressibility Es and Ws can be determined from the stress-strain curve through a confined
compression test (for example Odometer test) as shown in Figure 8.1. In this case, the deformation
will occur in the vertical direction only. Therefore, if the moduli of compressibility Es and Ws are
determined from a confined compression test, P0oisson’s ratio will be taken vs = 0.0. If the other
moduli of elasticity E and W are used in the equations derived in chapter 1, poisson’s ratio will be
taken to be vs# 0. In general, Poisson’s ratio ranges in the limits 0 <vs <0.5.
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Figure 8.1 Stress-strain diagram from confined compression test (Oedometer test)

The modulus of compressibility Es [kN/m?] (or Ws [kN/m?]) is defined as the ratio of the
increase in stress Ac to decrease in strain Ag as (Figure 8.1):

!
Ac _ S0,

: A€’ . Ag' (82)
w, =29 _ 5
Ag" A"

where:

Ao’ Increase in stress from ov to com [KN/m?]

ov Stress equal to overburden pressure [kN/m?]

com  Stress equal to expected average stress on the soil  [kN/m?]

Ag"  Decrease in strain due to stress from ov to Gom [-]

Ac"  Increase in stress due to reloading [KN/m?]

Ag"  Decrease in strain due to reloading [-]

The moduli of compressibility may be expressed in terms of either void ratio or specimen thickness.
For an increase in effective stress Ac to decrease in void ratio Ae, the moduli of compressibility Es
[kN/m2] and Ws [kKN/m2] are then expressed as:

E _ 1 _Ad'(1+ey)

ml Al

om! Ae"
where:
m’v  Coefficient of volume change for loading [m*/kN]
m”y  Coefficient of volume change for reloading [m?/kN]
e'o Initial void ratio for loading [-]
e"o Initial void ratio for reloading [-]
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Ae"  Decrease in void ratio due to loading [-]
Ae"  Decrease in void ratio due to reloading [-]

The values of Es and Ws for a particular soil are not constant but depend on the stress range over
which they are calculated. Therefore, for linear analysis it is recommended to determine the
modulus of compressibility for loading Es at the stress range from ov to com, while that for
reloading Ws for a stress increment equal to the overburden pressure ov. In the other hand, since
the modulus of compressibility increases with the depth of the soil, for more accurate analysis
the modulus of compressibility maybe taken increasing linearly with depth. Also, according to
Kany (1976) the moduli of compressibility Es and Ws maybe taken depending on the stress on
soil. In these two cases, the moduli of compressibility Es and Ws can be defined in the analysis
for several sub-layers instead of one layer of constants Es and Ws.

As a rule, before the analysis the soil properties are defined through the tests of soil mechanics,
particularly the moduli of compressibility Es and Ws. For pre calculations Table 8.2 for
specification of the modulus of compressibility Es can also be used.

According to Kany (1974), the values of Ws range between 3 to 10 times of Es. From experience,
the modulus of compressibility Ws for reloading can be taken 1.5 to 5 times as the modulus of
compressibility Es for loading.

For geologically strongly pre-loaded soil, the calculation is often carried out only with the
modulus of compressibility for reloading Ws. In this case, the same values are defined for Es and
Ws.

Matching with the reality, satisfactory calculations of the settlements are to be expected only if
the soil properties are determined exactly from the soil mechanical laboratory, field tests or back
calculation of settlement measurements.

Table 8.2 shows mean moduli of compressibility Es and the unit weight of the soil ys for various
types of soil according to EAU (1990).

Table 8.2 Mean moduli of compressibility Es and the unit weight of the soil s for various
8-4
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types of soil

Unit weight
vs [KN/m’] Modulus of
Type of soil compressibility
above under Es [kN/m?]
water water

Non-cohesive soil
Sand, loose, round 18 10 20000 - 50000
Sand, loose, angular 18 10 40000 - 80000
Sand, medium dense, round 19 11 50000 - 100000
Sand, medium dense, angular 19 11 80000 - 150000
Gravel without sand 16 10 100000 - 200000
Coarse gravel, sharp edge 18 11 150000 - 300000
Cohesive soil
Clay, semi-firm 19 9 5000 - 10000
Clay, stiff 18 8 2500 - 5000
Clay, soft 17 7 1000 - 2500
Boulder clay, solid 22 12 30000 - 100000
Loam, semi-firm 21 11 5000 - 20000
Loam, soft 19 9 4000 - 8000
Silt 18 8 3000 - 10000

8.3  Moduli of elasticity E and W

In the program ELPLA, the equations derived in chapter 1 to determine the flexibility
coefficients are used with moduli of elasticity E and W for unconfined lateral strain with
Poisson’s ratio vs # 0. It must be pointed out that, when defining Poisson’s ratio by vs = 0 (limit
case), the moduli of compressibility Es and Ws for confined lateral strain (for example from
Odometer test) also can be used.

The modulus of elasticity is often determined from an unconfined Triaxial compression test,
Figure 8.2. Plate loading tests may also be used to determine the in situ modulus of elasticity of
the soil as elastic and isotropic.
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Stress 6 [kN/m?]

€ Axial strain € = Ah/h [%]

Figure 8.2 Modulus of elasticity E from Triaxial test

It is possible to obtain an expression for the moduli of elasticity E and W in terms of moduli of
compressibility Es, Ws and Poisson’s ratio vs for the soil as:

2
E:ESI—\I/S—2Vs
—v
. 52 5 (8.4)
W=w, — sV
S BV

Equation 8.4 shows that:

- In the limit case vs = 0 (deformation without lateral strain), the values of E and Es (also
W and Ws) are equal

- In the other limit case vs = 0.5 (deformation with constant volume), the moduli of
elasticity will be E =0 x Es and W = 0 x Ws. In this case, only the immediate settlement
(lateral deformation with constant volume) can be determined. By the other way, the
second term in Steinbrenner’s formula (1.51) will be omitted, if Poisson’s ratio vs = 0.5
is used

Table 8.3 shows some typical values of modulus of elasticity according to Bowles (1977).
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Table 8.3 Typical range of moduli of elasticity E for selected soils

Type of soil Moduéu[skcl)\g Ielizzl]stlmty
Very soft clay 3000 - 3000
Soft clay 2000 - 4000
Medium clay 4500 - 9000
Hard clay 7000 - 20000
Sandy clay 30000 - 42500
Silt 2000 - 20000
Silty sand 5000 - 20000
Loose sand 10000 - 25000
Dense sand 50000 - 100000
Dense sand and gravel 80000 - 200000
Loose sand and gravel 50000 - 140000
Shale 140000 - 1400000

8.4 Compression index C, und initial void ratio e,

In case of clayey soil it is recommended to use the settlement parameters Cc, Cr and Cs to
represent the elastic properties of the soil in the computation of consolidation settlements. These
parameters or indices can be obtained directly from the consolidation test or indirect using some
empirical equations such as Equations 8.7 and 8.8.

Compression index C; from consolidation test
The typical relationship between the void ratio € and effective stress ¢ obtained from the
consolidation test is shown in Figure 8.3. The slope of the end part of the e versus log ¢ curve is

denoted as the Compression index Cc and computed as:

c - 2e (8.5)

By analogy, the other indices Cr and Cs can be obtained as shown in Figure 8.3 and Equation
8.6:

C, orC = ae (8.6)
log—%
Oj

where:
Cr Recompression index [-]
Cs Swell index [-]
Ae Change in void ratio between i and 62 [-]
Gi Any pressure along the appropriate curve  [kN/m?]
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Figure 8.3 Relationship between void ratio and effective stress obtained from consolidation test

Compression index C. from empirical equations

Because of the number of consolidation tests to obtain the compression indices for a given
project are limited, it is often desirable to obtain approximate values by using other soil
parameters which are more easily determined. Approximate values may be used for preliminary
calculations or to check the laboratory data.

For normally consolidated clays Terzaghi/ Peck (1967), on the basis of research on undisturbed

clays, proposed the following equation to obtain the Compression index Cc [-] from the liquid
limit of the soil LL [%]:

C, =0.009(LL—10) (8.7)

Azzouz (1976) lists several equations to obtain the compression index, one of them is given
below to obtain the Compression index Cc [-] from the initial void ratio €o [-] of the soil:

C, =1.15(e, —0.35) (8.8)

Typical values of compression and swell indices as well as the corresponding void ratio at stress
oo = 10 [kKN/m2] are presented in the following table according to Gudehus (1981). The
compression index Cc is valid for loading while Cs is valid for both heaving and reloading.



Theory for the calculation of shallow foundations

Chapter 8 Soil Properties
Table 8.4 Compression and swell indices depending on the initial void ratio
Soil type Compression index Swell index Initial void ratio
P Ce[-] Cs[-] e [-]
Gravely sand 0.001 0.0001 0.3
Fine sand, dense 0.005 0.0005 0.5
Fine sand, loose 0.01 0.001 0.7
Coarse silt 0.02 0.002 0.8
Clayey silt 0.03-0.6 0.01-0.02 0.9-1.2
Kaolin-Silt 0.1 0.03 1.5
Schlick 0.1-0.3 0.03-0.1 1.2-2.5
Clay 0.5 0.4 5
Peat 1 0.3 10

8.5 Shear parameters ¢ and C

Angle of internal friction ¢ and cohesion C are physical soil properties for determining bearing
capacity of the soil, they are called also shear parameters. The shear parameters ¢ and C can be
obtained from shear test or Triaxial test. They are usually obtained for a certain soil by carrying
out three shear tests with different stresses. The results of such series can be plotted as points in
1-6 diagram as shown in Figure 8.4.

Figure 8.4

Shear strength ¢ [kN/m?]

Normal stress 6 [kN/m?]

Shear strength at variable normal stress

For many soil types, the points lie quite exactly in a straight line. The intersection of the line
with y-axis gives the value of cohesion ¢, while the inclination of the line gives the angle of
internal friction ¢. The straight line Equation 8.9 is called Coulomb’s friction law for shear

strength.

T; =C+0 tang@

(8.9)

8-9
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As known from the pore water pressure U that when the effective stress ¢’ = ¢ -U is used instead
of the normal stress ¢, Equation 8.9 becomes:

T, =C'+0' tano’ (8.10)
where:
c’ Effective cohesion [KN/m?]
0} Effective angle of internal friction  [°]

When the pore excess water pressure cannot drain, at least quickly, from the soil sample in the
shear test, undrained condition occurs.

T, =C,+0Q, (8.11)
where:
Cu Undrained cohesion [KN/m?]
Qu Undrained angle of shearing resistance [°]

In a fully saturated soil @u = 0.

You can write the shear parameters without the index u, if it is clear that the ultimate bearing
capacity of the saturated soil is being without volume changes. The ultimate bearing capacity of
the soil is often determined without considering the pore water pressure according to Figure 8.4
and Equation 8.9. Mean average values of the angle of internal friction ¢ and cohesion C for
various types of soil are listed in Table 8.5 according to EAU (1990). These values are used
only for preliminary calculation.
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Table 8.5 Mean average values of shear parameters according to EAU (1990)

Angle of

Cohesion
internal
Type of soil friction o’ Cu
A E’Of]@' [kN/m?] [kN/m?]
Non-cohesive soil
Sand, loose, round 30 - -
Sand, loose, angular 32.5 - -
Sand, medium dense, round 32.5 - -
Sand, medium dense, angular 35 - -
Gravel without sand 37.5 - -
Coarse gravel, sharp edge 40 - -
Cohesive soil
Clay, semi-firm 25 25 >0 - 100
Clay, stiff 20 20 25-50
Clay, soft 17.5 10 10°-25
Boulder clay, solid 30 25 200 - 700
Loam, semi-firm 27.5 10 50 - 100
Loam, soft 27.5 - 10-25
silt 275 i 10-50
Peat 15 5 )
Explanations about Table 8.5
(0] Actual angel of internal friction
o' Effective angle of internal friction; for non-cohesive soil is ¢ = ¢’
c’ Effective cohesion referred to ¢’
Cu Undrained apparent cohesion at zero friction for a saturated cohesive soil

8.6  Modulus of subgrade reaction ks

It is important to say that the modulus of subgrade reaction ks is not a soil constant, but it can be
related to the elastic parameters Es and vs of the soil.

It may be determined from in situ plate loading test. This test is generally performed using a
circular steel plate (30 in diameter) thick enough so that the bottom plate will settle uniformly
under a vertical load. The modulus of subgrade reaction ks [kN/m’] is defined as the ratio
between the soil pressure ¢ [kN/m?] and corresponding settlement s [m], Equation 8.12.

k =4 (8.12)

In practice the plate would not stress the same soil strata as the full size foundation. Therefore,

the result from a plate loading test may give quite misleading results if the proposed foundation

is very big. The soft layer of soil in Figure 8.5 is unaffected by the plate loading test but would
8-11
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be considerably stressed by the foundation. Therefore, it is recommended to evaluate the
modulus ks from the elastic parameters Es and vs of the soil.

Full size foundation

Plate loading

Firm soil
Bulb of

Soft layer

Rigid base

Figure 8.5 Ilustration of how a plate loading test may give misleading results

A reasonable approximation of modulus of subgrade reaction ks can be obtained from the
allowable soil pressure gan according to Bowles (1977). This way is presented on the assumption
that the allowable soil pressure is based on some maximum amount of settlement s, including a
factor of safety FS. Accordingly, the modulus of subgrade reaction ks is given by:

 =Fsa (8.13)

The modulus of subgrade reaction ks [kKN/m?] for a settlement of s = 0.0254 [m] equal to S = 1.0
[m] and a factor of safety FS = 3 can be taken as:

qall
k.=3—2—=120 8.14
) 0.0254 qa” ( )

In case of carrying out the analysis with constant modulus of subgrade reaction, it is
recommended to determine the modulus of subgrade reaction from settlement calculation. More
complicated analysis for irregular foundation on variable moduli of subgrade reactions is
available in the program ELPLA. Furthermore, the moduli of subgrade reactions can be
improved through the calculated contact pressures and settlements by iteration.

The following Table 8.6 shows the approximate average values of ks according to Wolfer (1978).
These values may be used only for primary calculation.

Table 8.6 Typical average values of moduli of subgrade reactions kS for selected soils
8-12
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. Modulus of subgrade reaction
Type of soil ks [kN/m?]

Peat 5000 - 10000

Fill of sand and gravel 10000 - 20000

Wet clayey soil 20000 - 30000
Moistured clay 40000 - 50000

Dry clay 60000 - 80000

Hard dry clay 100000

Coarse sand 80000 - 100000
Coarse sand + small amount of gravel 80000 - 100000

Fine gravel + small amount of gravel 80000 - 100000
Middle size gravel + fine sand 100000 - 120000
Middle size gravel + coarse sand 120000 - 150000
Large size gravel + coarse sand 150000 - 200000

8.7  Allowable bearing capacity of the soil qa

The value of allowable bearing capacity of the soil is based on theoretical as well as
experimental investigation. Such a value usually includes a factor of safety of 3 (Quit = 3 Qan).
This indicates that the design loads used in establishing the bearing capacity area of the
foundation must be service loads with no reduction.

Approximate allowable bearing capacity (ail of common types of soils are listed in Table 8.7
according to Bakhoum (1986) and can be taken for primary calculations.

Table 8.7 Approximate allowable bearing capacity quit of common types of soils
. Allowable bearing capacity
Type of soil Qi [KN/m?]
Noncohesive soil
Loose sand 100
Medium sand 200
Dense sand 500
Hard rock 5000
Cohesive soil
Soft-medium clay 90
Stiff clay 150
Very stiff clay 300
Hard clay 500

8.8 Settlement reduction factor o
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As according to experience the real consolidation settlements are different from those calculated,
the settlements s are multiplied by a factor a according to German standard DIN 4019, page No.
1. According to this standard the following reduction factors in Table 8.8 can be applied:

Table 8.8 Reduction factors a according to DIN 4019, page No. 1

soil type o
Sand and silt 0.66
Normally and slightly over consolidated clay 1.0
Heavily over consolidated clay 0.5-1

In the program ELPLA, the moduli of compressibility Es and Ws are divided by a as follows:

a (8.15)

In the final result, this process is equivalent to the following Equation 8.16:

S=a$ (8.16)
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9.1 Introduction

When ordering package ELPLA, a CD is delivered. It contains the programs and 20 project data files
for test purposes, which were described in this book. These data introduce some possibilities to ana-
lyze slab foundations by ELPLA.

Firstly, the numerical examples were carried out completely to show the influence of different sub-
soil models on the results. Furthermore, different calculation methods for the same subsoil model
are applied to judge the computation basis and the accuracy of results. In some cases the influences
of geological reloading, soil layers and also the structure rigidity are considered in the analysis.

For this purpose, the following numerical examples introduce some possibilities to analyze founda-
tions. Many different foundations are chosen, which are considered as some practical cases may be
happened in practice. All analyses of foundations were carried out by ELPLA, which was developed
by Kany/ El Gendy.

In the next pages, names of files of the numerical examples, content and short description of the
examples are listed.

9.2 Examples of chapter 2
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Part B: Theory used in the formulation of ELPLA

Example 2.1: A square raft on irregular subsoil

File name Content
unl Modulus of subgrade reaction- method 3 (Interpolation)
un2 Layered soil medium (elastic raft)-method 6 (Interpolation)
un3 Layered soil medium (rigid raft)-method 8 (Interpolation)
un4 Modulus of subgrade reaction- method 3 (Subareas method)
und Layered soil medium (elastic raft)-method 6 (Subareas method)
un6 Layered soil medium (rigid raft)-method 8 (Subareas method)
un? Modulus of subgrade reaction- method 3 (regular layer)
und Layered soil medium (elastic raft)-method 6 (regular layer)
un9 Layered soil medium (rigid raft)-method 8 (regular layer)
L1515 15 . 16
|
00 ! 0
: . |
% 7.8 8 _ ___é______ .o
D 0 | 500
< . .
L) | 2
o233 i 1
; A=12x0.83 =10.00 '
i d=0.4[m]

_m

z=10.0

Compressible layer

Example 2.2: An irregular raft on irregular subsoil
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File name Content
gbl Linear contact pressure -method 1
gb2 Constant modulus of subgrade reaction-method 2
gb3 Variable modulus of subgrade reaction-method 3
gb4 Modification of modulus of subgrade reaction by iteration-method 4
gb5 Isotopic elastic half-space soil medium-method 5
gb6 Layered soil medium by iteration (elastic raft)-method 6
gb7 Layered soil medium by elimination (elastic raft)-method 7
gb8 Layered soil medium (rigid raft)-method 8

Example 2.3: System of footings on irregular subsoil
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File name Content
foi Footingi(i=1t09)
Group Group of footings

Dir: Interpolation Analysis with limit depth using interpolation
Dir: LdrFooting3 Analysis with limit depth related to footing 3
Dir: LdrFooting5 Analysis with limit depth related to footing 5
Dir: Without LD Analysis without limit depth

y [m)

t\:tzttt” “;':t;“

lt;trt;tttttttt

9.3  Examples of chapter 3
Part B: Theory used in the formulation of ELPLA
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Example 3.1: Settlements outside the foundation

File name Content
sel Contact area |
Contact areas II+111 % } \k %
a) To07

se2

14.0 m

8.0m

(0.0,0.0)
+
8.0

6.0

15.0m

<+

b)

Example 3.2: Influence of a new neighboring building on an old one

File name Content
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eil Only new building
ei2 New building + Old building

- -~~~ E=5000 [kNm —
B T We= 15000 [kN/m?] —
- - - 7 Sy =18 [KN/m] _

Ey = 2107 [KN/m?]
Vo =0.15 [-]
Yo =0.0 [kN/m’]

(lzovv;v*vvvtvv!!vttvr—v—TV!r!vy‘v—yyyy
a) Section a-a Rock
P, =500 [KN]
New building IT 01d building I P, = 1000
P;=2000
oP oP oP || oP: [Py oP
o0
<
= |a—eP P oP|| oP P oPla
1
o™
=
S
X
=
P: P P[P Ps P
b) 14 x 0.72 =10.08 14 x 0.72 =10.08

Example 3.3: Influence of ground lowering due to a tunnel on a building

File name Content
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tul Without tunnel P 231 g(‘))(l)((l)\]/ ]
. p= 'm
tu2 With tunnel }
& B2(17.0,
Y S =
\
......................... p
B3120.5, |
C200 0 24
(0.00
T, Clay :‘:g_ ;
E, = 10000 [kN/m?] = E
W; = 30000 [kN/m?] =4 F
S2 n =18 v =4 E
—=1(5.50) - 4
T (630 [ =3 - =
N - = (7.00
g 11'1 :i 1 i 7
L2t sst, Sandstone A A ll_lz
5| E.= 160000 [kN/m’] L
2] Ws= 400000 [kN/m’] L R
Ly =21 [kN/ m?] )
x GW S el
_lzz'z' 'Izz.‘l_. ZZ'Z._'I
b (14.00 2]
B B B

94 Examples of chapter 4
Part B: Theory used in the formulation of ELPLA

Example 4.1: Interaction of two circular rafts
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File name Content
hal Circular raft |
ha2 Circular raft II
h12 Circular raft I + Circular raft 11

y |

e e
‘:II 11 fTTJr ﬁ_j—-‘_-’—H_
'rrH'm'Erd"r—r - #+H-HHdHH

[}

HEt++-+H++i

®p,=1250
® P,=1000

Example 4.2: Settlement behavior of four containers

File name Content

sta Circular raft A

stb Circular raft B

stc Circular raft C

std Circular raft D

ste Analysis of system of rigid circular rafts A+B

O
O

B
g| o  GW 327.00 Sand + Gravel
; I~ o= Es =15 000 [KN/m’]
- N @ N B Silt + Clay
. > < 4 > E Es =15 000 [kN/m?]
N / N y, -

D — F =263 [m?]

c
a) 31.00 b) p =352 [kN/m?]

Example 4.3: Interaction of two rafts considering two additional footings

File name Content

sfl Footing III
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sf2 Footing IV

fl1 Flexible raft |

f12 Flexible raft I1

12 Analysis of system of flexible rafts [+1I

ell Elastic raft |

el2 Elastic raft 11

el2 Analysis of system of elastic rafts I+11 + 11

rgl Rigid raft

rg2 Rigid raft IT

rl2 Analysis of system of rigid rafts I+II
14 o 2ﬁ
10 @

5, '”' © ©n

Example 4.4: Interaction of two square rafts constructed side by side

File name Content

Rfl sys Raft system (raft 1)
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Rf2 sys Raft system (raft II)
Rfl 2 sys Raft system (rafts I + II)
Rfl Without interaction (raft I)
Rf2 Without interaction (raft II)
Rfl 2 *cm Case 1: (C = *cm)

Rfl Nachbar *cm  Case 2: raft I (C = *cm)
Rf2 Nachbar *cm  Case 2: raft Il (c = *cm)

Rfl 2 Case 3

Rfl 2 Fugen Case 4
2x1=2
4 4] -

L)

Detail

2 [em] raft thickness
Detail

400

A
200
T v oo
Section NG ! 103
% 8x1.5=12 H 8x1.5=12 %
. 2x1=2
a a a
Il
/
Pla Raft I \_"B Raft 11
Example 4.5: Analysis of a swimming pool
File name Content
slr Swimming pool left + right (without joint)
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smt Swimming pool left + right (with interaction and with shearing forces)
sol Swimming pool left 5 (without interaction)
sor Swimming pool right 5 (without interaction)
ssy Swimming pool left + right 5 (with interaction and without shearing forces)
au* Influence of the filling around Swimming pool (uniform load *)
@83 . :5)

K

& BI
@ |
| Property
lin
B4 :
e |
|
A Loy A
) i
1 T
[
[
1 i
I
@85 i
i
I3[m]I Sim] | 10 [m] | 4 [m] i
Pla :
vy 587.6
5868 || o
vs86.1 T v 586.1
Original ground surface
Section A-A

9.5  Examples of chapter 5
Part B: Theory used in the formulation of ELPLA

Example 5.1: Rigidity of simple square raft
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File name Content
th* Raft thickness from 0.0 to 0.9 [m]
t1* Raft thickness from 1.0 to 2.0 [m]
XX Rigid raft Raft
P=9000 [kN]
Es=2x107
/ 7?%%:0.15 [-]

20.00 (i

Compressible layer
Es = 10000 [kN/m?]

Example 5.2: Rigidity of irregular raft on irregular subsoil

File name Content

g00  Raft thickness d = 0.0 [m]
gb*  Raft thickness from 0.1 to 0.9 [m]
gl*  Raft thickness from 1.0 to 1.9 [m]
g20  Raft thickness d =2.0 [m]
gxx  Rigid raft

9.6  Examples of chapter 6
Part B: Theory used in the formulation of ELPLA

Example 6.1: Analysis of a raft for a high rise building
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File name Content
raftl Only raft
raft2 Raft- cellar
raft3 Raft-cellar-superstructure
raftr Rigid raft
[ ] I !
[ ] 1
|| L1l | = 1
[ICIC I [ ] 1
N O | 9
I \: T O O I 8
d 7
0 [ ] o 6
\ — S
] = 4
A e 13
T 1] [ ] 7 20
E \ F 1
a) Longitudinal A-B 17.55 [m] ‘
¢) Cross-section C-D
Ct 1=3. 3. 3.63
- = -‘ ---------- "L
AI u H = N n n " = u C-l n .0 5-0/().50- 1_E 2
olumns V. . .
[ l‘ /‘Cglur.nnslo.;l()/(l)ﬁti&. I lj‘ ©

‘T D=

L=18x3.60=64.80 [m] ‘
66.00 [m]

b) Plan (section E-F)

9.7  Examples of chapter 7
Part B: Theory used in the formulation of ELPLA

Example 7.1: Verification of nonlinear analysis for Winkler's model
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File name Content
fel Point load (linear analysis)
fcn Point load (non-linear analysis)
ful Uniform load (linear analysis)
fun Uniform load (non-linear analysis)

[ 1000 [kN]
gl > Loading case a)

ZSOV [kN/m?]

S WMWWWM%W 7~ Loading case b)

Assumed influenced area borders

3.0 [m]
-
=
s
N =
o
| |~ Footing borders | .-
=
05 2.0 05

Example 7.2: Analysis of Rectangular foundation subjected to eccentric loading

File name Content
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172 Zone (2) L4 L/

rz3 Zone (3) i =
174 Zone (4) B4l @ @ @
1Z5 Zone (5)

B/4 _@__@_Sl@i T ey._IB./6 ;

. X
5) &)
@ G? @
L6 |
L
Example 7.3: Circular foundation subjected to eccentric loading
File name Content
Cir-e=1.75 e=1.75[m]
Cir-e=2.00 e=2.00 [m] - _|__ —
Cir-e=2.25 e=2.25[m] E [ o
Cir-e=2.50  €=2.50 [m] i :
Cir-e=2.75 e=2.75[m] i I
Cir-e=3.00 e=3.00 [m] ! 5
Cir-e=3.25 e=3.25[m] o | !
Cir-e=3.50 e=3.50[m] ! : 1
Cir-e=3.75 e=3.75[m] | : N = 2000 [kN] T

-

Example 7.4: Elastoplastic analysis of a raft resting on Continuum medium

File name Content
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lin Linear analysis
non Non-linear analysis
p = 600 [kN/m?]
(IR RN R R NN R R R R RN NN RN R RRR RN RNRNRRARRERER]|
d=05 Il |
Section
a
1
el
Il
\n
(=)
X
\
I
[an]
|
a
Plon L=32x0.5=16 o
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