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Preface 
 
The purpose of this text is to present the methods, equations, procedures, and techniques used in 
the formulation and development of the ELPLA function. It is of value to be familiar with this 
information when using the software.   
 
An understanding of these concepts will be of great benefit in applying the software, resolving 
difficulties, and judging the acceptability of the results. 
 
Two familiar types of subsoil models were considered, Winkler’s model and Continuum model. 
In addition, the simple assumption model is also considered. The model assumes linear contact 
pressure on the base of the foundation. 
  
Finite elements-method was used to analyze both of the raft and grid foundations (or the ribbed 
raft). In which plate bending elements represent the raft according to the two-dimensional nature 
of foundation, while grid elements represent the grid. 
 
The development of the finite element equations for plate elements and grid elements is well 
documented in standard textbooks and consequently it is not duplicated in this User’s Guide. 
 
 
           August 2010 
 
 
M. El Gendy 
Port Said, Egypt 
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Preface 
 
Today, nearly every engineering office has its own computer programs for the analysis and design 
of foundations. Furthermore, most of the available programs under Windows are user-friendly and 
give very excellent output graphics with colors. Consequently, theoretically a secretary not an engi-
neer can use them. But the problem here is how to control the data and check the results. The pur-
pose of this book is to present the methods, equations, procedures and techniques used in the formu-
lation of the computer analysis of the foundations. These items are coded in the program ELPLA. 
The book contains many practical problems which are analyzed in details by using the program 
ELPLA. It is important for the engineer to be familiar with this information when carrying out com-
puter analysis of foundations. An understanding of these concepts will be of great benefit in carrying 
out the computer analysis, resolving difficulties and judging the acceptability of the results. Three 
familiar types of subsoil models (standard models) for foundation analyses are considered. The 
models are Simple Assumption Model, Winkler´s Model and Continuum Model. In the analysis, 
foundations are treated as flexible, elastic or rigid. In this book the Finite Element-Method was used 
to analyze both of the raft and grid foundation (or the ribbed raft). In which plate bending elements 
represent the raft according to the two-dimensional nature of foundation, while grid elements repre-
sent the grid. The development of the finite element equations for plate elements and grid elements 
is well documented in standard textbooks and consequently it is not duplicated in this book. 
 
 
           August 2010 
 
 
M. El Gendy 
Port Said, Egypt 
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1.1 Symbols used in chapter 1 
 
i Node number 
k Field number 
j Iteration cycle number 
Nw Band width number of the matrix 
N Sum of all vertical applied loads on the foundation [kN] 
qi Contact pressure at node i [kN/m2] 
xi Coordinate of node i from the centroidal axis x [m] 
yi Coordinate of node i from the centroidal axis y [m] 
Af Foundation area [m2] 
Mx Moment due to N about the x-axis [kN.m] 
My Moment due to N about the y-axis [kN.m] 
Ix Moment of inertia of the foundation about the x-axis [m4] 
Iy Moment of inertia of the foundation about the y-axis [m4] 
Ixy Product of inertia [m4] 
ex Eccentricity measured from the centroidal axis x [m] 
ey Eccentricity measured from the centroidal axis y [m] 
ai Side of contact area around node i parallel to x axis [m] 
bi Side of contact area around node i parallel to y axis [m] 
Eb modulus of elasticity of the plate element [kN/m2] 
νb Poisson's ratio of the plate element [1] 
d thickness of the plate element [m] 
D Flexural rigidity of the plate element D =Eb d3/(12(1- νb

2)) 
Qi Contact force at node i [kN] 
Es

l Modulus of compressibility of the layer l [kN/m2] 
Fl Settlement coefficients f for the system of all layers until layer l, which have been 
 replaced by a material from layer l 
f(l-1) Settlement coefficients f for the system of all layers until layer l-1, which have been 
 replaced by a material from layer l 
Δfl Difference of settlement coefficients fl - f(l-1) 
wi Displacement at node i [m] 
si Soil settlement at node i [m] 
ksi Modulus of subgrade reaction at node i [kN/m3] 
ki Spring stiffness (Modification of modulus of subgrade reaction by iteration) [kN/m] 
ck,i Flexibility coefficient of point k due to a unit load at point i [m/kN] 
 
wo Rigid body translation of the raft wo  at the centroid [m] 
sWi Settlement of point i due to load from 0 to qv [m] 
 with modulus of compressibility Ws ( part of reloading ) 
sEi Settlement of point i due to load from qv to qo [m] 
 with modulus of compressibility Es (part of primary loading ) 
qv Overburden pressure [kN/m2] 
Hmi Foundation level of raft i above the specified datum [m] 
tfi Foundation level of raft i from the ground surface [m] 
zil z-value of flexibility coefficient from the ground surface [m] 
zikl z-value of flexibility coefficient of raft (or node) i due to load from raft (or node) k [m] 
θxi Rotation of node i about the x direction [Rad]  
θyi Rotation of node i about the y direction [Rad] 
ε  Tolerance of accuracy [m] 
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θxo Rigid body rotation of the raf about the x-axis of geometry centroid [Rad] 
θyo Rigid body rotation of the raft about the y-axis of geometry centroid [Rad] 
{F} Vector of total external forces due to applied loads and the soil reactions 
{N} Vector of the resultant force N and moments My and Mx 
{P} Vector of applied loads 
{Q} Vector of soil reactions 
{Qw} Vector of groundwater forces 
{s} Vector of nodal settlements 
{sW} Vector of settlements due to reloading 
{sE} Vector of settlements due to primary loading 
{sT} Vector of displacement due to temperature difference 
{QE} Vector of contact pressures for loading part 
{Qv} Vector of contact pressures for reloading part 
{Qw} Vector of water pressure forces 
[c] Flexibility matrix of the soil 
[ks] Soil stiffness matrix 
[kp] Plate stiffness matrix 
[kg] Grid stiffness matrix 
[X] Vector of coordinates x and y 
[cW] Flexibility matrix which is determined by modulus Ws 
[cE] Flexibility matrix which is determined by modulus Es 
[ks.E] Soil stiffness matrix which is determined by modulus Es 
[ks.w] Soil stiffness matrix which is determined by modulus Ws 
{δ} Nodal displacements of the foundation, each nodal displacement has deflection w and 
 two rotations θx and θy about x and y axis, respectively 
{Δ} Vector of translation wo and rotations tan θxo and tan θyo 

 
 
1.2  Introduction 
 
This chapter describes the most common practical models used in the analysis of foundations. 
 
Foundation is the base of the structure that transmits its loads to the soil. It must include often 
considerable moments and forces. Although every structure is founded on soil, most of the 
practical analyses of the structure and its foundation, do not take into account the influence of 
the subsoil behavior below or around the foundation. 
 
In times, when there no computers were available, simplified methods were used considering as 
low as possible computation effort to receive the results with acceptable accuracy. In some 
publications, such as that of Ohde (1942), extensive and refined calculation methods were 
proposed and applied only for few cases in the practice. 
 
The computers whose programming and memory possibilities are developed increasingly caused 
a revolution of the calculation practice. Now the programming and extensive computation effort 
can expand considerably to achieve the results as perfect as possible to the reality. These 
methods are considered particularly for the analysis of mostly deformation sensitive large 
structures. 
 
By determination of contact pressures, internal forces and deformations of foundations, 
distinguishing between the calculation methods used in the analysis of strip foundations and 
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those of rafts is important. Where by strip foundations a linear or uniform distribution of contact 
pressures in long direction may be assumed, while for rafts the contact pressures are examined in 
both directions. 
  
Strip foundations may be analyzed using classical subsoil models. Such as Winkler's model 
according to Winkler (1867), Graßhoff (1978) and Wölfer (1978) and Continuum model 
according to Ohde (1942), Graßhoff (1978) and Kany (1974). In addition, cases of small and 
irregular foundations can be analyzed by fewer extensive methods using tables and charts. 
 
For determination of internal forces and deformations of rafts, Finite differences-method or 
Finite elements-method is applied. Deninger (1964) developed a computer program to determine 
the contact pressures and deformation of rectangular rafts on elastic layer using the Finite 
differences-method. The earliest application of the Finite elements-method for the investigation 
of the soil foundation interaction was that of Cheung/ Zienkiewicz (1965). These authors 
considered the analysis of rectangular plate resting on Winkler's medium and on isotropic elastic 
half-space soil medium.  
 
The subsoil models for analysis of foundations (standard models) can be divided into three main 
groups: 
  
˗ Simple assumption model, 
˗ Winkler's model, 
˗ Continuum model. 
 
Simple assumption model does not consider the interaction between the foundation and the soil. 
The model assumes a linear distribution of contact pressures beneath the foundation. Winkler's 
model is the oldest and simplest one that considers the interaction between the foundation and 
the soil. The model represents the soil as elastic springs. Continuum model is the complicated 
one. The model considers also the interaction between the foundation and soil. It represents the 
soil as a layered continuum medium or isotropic elastic half-space soil medium.  
 
Although Continuum model provides a better physical representation of the supporting soil, it 
has remained unfamiliar, because of its mathematical difficulties where an application of this 
model requires extensive calculations. Practical application for this model is only possible if a 
computer program or appropriate tables or charts are available. For this aim Wölfer (1978), 
Graßhoff (1978), Kany (1974), Sherif/ König (1975), Hahn (1971) and El Kadi (1968) presented 
series of tables and charts that can be used for determining contact pressures, moments, shear 
forces and deflections, but using these tables and charts are limited to certain problems. 
 
For this purpose, a general computerized mathematical solution based on Finite elements-
method was developed to represent an analysis for foundations on the real subsoil model. The 
solution can analyze foundations of any shape considering holes within the foundation and the 
interaction of external foundations. This mathematical solution is coded in the program ELPLA 
(2001). 
 
The developed computer program ELPLA also can analyze different types of subsoil models, 
especially the three dimensional Continuum model that considers any number of irregular layers. 
Additionally, the program can be used to represent the effect of structural rigidity on the 
foundation-soil system and the influence of temperature change on the foundation. 
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In this book, the three standard soil models are described through nine different numerical 
calculation methods. The methods graduated from the simplest one to more complicated one 
covering the analysis of most common foundation problems that may be found in the practice. 
 
 
1.3 Description of the numerical calculation methods 
 
According to the three standard soil models (simple assumption model - Winkler's model - 
Continuum model), nine numerical calculation methods are considered to analyze the raft as 
shown in Figure 1.1 and Table 1.1. 
 
Table 1.1 Numerical calculation methods  
 

 

Method No. 
 

 

Method 

 
1 
 
 
2 
 
 
3 
 
 
4 
 
 
5 
 
 
6 
 
 
 
7 
 
 
 
8 
 
 
9 

 
Linear contact pressure 
(Simple assumption model) 
 
Constant modulus of subgrade reaction 
(Winkler's model) 
 
Variable modulus of subgrade reaction 
(Winkler's model) 
 
Modification of modulus of subgrade reaction by iteration 
(Winkle's model/ Continuum model) 
 
Modulus of compressibility method for elastic raft on half-space soil 
medium (Isotopic elastic half-space soil medium-Continuum model) 
 
Modulus of compressibility method for elastic raft on layered soil medium  
(Solving system of linear equations by iteration) 
(Layered soil medium-Continuum model) 
 
Modulus of compressibility method for elastic raft on layered soil medium  
(Solving system of linear equations by elimination) 
(Layered soil medium-Continuum model) 
 
Modulus of compressibility method for rigid raft on layered soil medium  
(Layered soil medium-Continuum model) 
 
Modulus of compressibility method for flexible foundation on layered soil 
medium  
(Layered soil medium-Continuum model) 
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Figure 1.1 Numerical calculation method of rafts (methods 1 to 9) 
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Today, The Finite elements method is the most powerful procedure available in many complex 
problems. It can be applied to nearly all engineering problems, especially in structure analysis 
problems. In this book, the Finite elements-method is used to analyze the raft for all numerical 
calculation methods except Modulus of compressibility method for rigid raft on layered soil 
medium (method (8)), which does not obey the elasticity rules. In the Finite elements-analysis, 
the raft is represented by rectangular plate bending elements according to the two dimensional 
nature of foundation. Grid elements are selected to represent the presence of ribs in the ribbed 
raft or grid foundations. Each node of plate or grid elements has three degrees of freedom, 
vertical displacement w and two rotations θx and θy about x- and y-axis, respectively. The 
development of the finite element equations is well documented in standard textbooks. 
Consequently, it is not duplicated in this book. The reader can see as an example that of 
Zienkiewicz/ Cheung (1970) or Schwarz (1984) for further information on the development of 
finite element equations. 
 
To formulate the equations of the numerical calculation methods both the raft and the contact 
area of the supporting medium are divided into rectangular elements as shown in Figure 1.2. 
Compatibility between the raft and the soil medium in vertical direction is considered for all 
methods except Linear contact pressure method (method 1). 
 
The fundamental formulation of equilibrium equation for the raft can be described in general 
form through the following Equation 1.1: 
 

     Fkp δ

�

     (1.1) 

 
where the vector of forces {F} contains the action and reaction forces acting on the raft. In 
principle for all calculation methods, the action forces are known and equal to the applied forces 
on the raft while the reaction forces (contact forces) are required to be found according to each 
soil model. 
 
It is assumed that the contact pressure qi can be replaced by equivalent force Qi at the various 
nodal points. The contact pressure around the node i is given by qi = Qi/(ai×bi) over an 
appropriate area ai×bi corresponding to the nodal contact i. It should be noticed that the contact 
area contributing to the nodal reactive force is variable from a node to another according to its 
location. Figure 1.2 shows some examples for the different nodal areas (nodes 34, 36, 38, 39 and 
61).  
 
According to subsoil models (Simple assumption model - Winkler's model - Continuum model), 
eight numerical calculation methods are considered to find the contact pressures qi, and hence to 
analyze the raft. The next pages describe the interaction between the raft and subsoil medium in 
these methods. 
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Figure 1.2 Nodal action between raft and soil 
  a) Raft foundation 
  b) Nodal action on soil 
 
 
1.3.1 Linear contact pressure (method 1) 
 (Simple assumption model) 
 
This method is the simplest one for determination of the contact pressure distribution under 
foundations. The assumption of this method is that there is no compatibility between the 
foundation deflection and the soil settlement. In the method, it is assumed that the contact 
pressures are distributed linearly on the bottom of the foundations (statically determined) as 
shown in Figure 1.3. In which the resultant of soil reactions coincides with the resultant of 
applied loads.  
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Figure 1.3 Contact pressure distribution for Simple assumption model 
  a) Section parallel to x-direction 
  b) Section parallel to y-direction 
  c) Foundation plan 
 
 
In the general case of a foundation with an arbitrary unsymmetrical shape and loading, based on 
Navier’s solution the contact pressure qi at any point (xi, yi) from the geometry centroid on the 
bottom of the foundation is given by:  
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[kN/m2] (1.2) 

 
For a foundation of rectangular shape, there are two axes of symmetry and Ixy = 0. Therefore, the 
contact pressure qi of Equation 1.2 reduces to: 
 

i
x

x
i

y

y

f
i y

I

M
x

I

M

A

N
q        (1.3) 

 
while for a foundation without moments or without eccentricity about both axes the contact 
pressure qi will be uniform under the foundation and is given by: 
 

f
i A

N
q       (1.4) 

 
 
 
 
System of equations of Linear contact pressure method 

c
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qi 
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The foundation can be analyzed by working out the soil reactions at the different nodal points of 
the Finite elements-mesh. This is done by obtaining the contact pressure qi from Equation 1.2. 
Then, the contact force Qi at node i is given by: 
 

iiii baqQ   
 

     (1.5) 

 
Considering the entire foundation, the foundation will deflect under the action of the total 
external forces {F} due to known applied loads {P} and the known soil reactions {Q}, where: 
 

     QPF       (1.6) 
 
The equilibrium of the system is expressed by the following matrix equation: 
 

       QPkp δ

 

    (1.7) 

 
Equation solver of Linear contact pressure method 
  
As the plate stiffness matrix [kp] in Equation 1.7 is a diagonal matrix, the system of linear 
equations 1.7 is solved by Banded coefficients-technique. The unknown variables are the nodal 
displacements wi and the nodal rotations θxi  and θyi  about the x- and y-directions. 
 
 
1.3.2 Modulus of subgrade reaction (methods 2 and 3) 

(Winkler's model) 
 
The oldest method for the analysis of foundation on elastic medium is the modulus of subgrade 
reaction, which was proposed by Winkler (1867). The assumption of this method is that the soil 
model is represented by elastic springs as shown in Figure 1.4. The settlement si of the soil 
medium at any point i on the surface is directly proportional to the contact pressure qi at that 
point and is mathematically expressed as: 
 

isii skq         (1.8) 

 
The ratio between the contact pressure qi [kN/m2] and the corresponding settlement si [m] is 
termed the modulus of subgrade reaction ksi [kN/m3]. 
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Figure 1.4 Winkler’s model 
 
System of equations of Modulus of subgrade reaction 
 
For a node i on the Finite elements-mesh, the contact force Qi is given by: 
 

iisiiii skbaQ          (1.9) 

 
It should be noticed that ksi is the modulus of subgrade reaction at the node i. It may be constant 
for the entire foundation (Constant modulus of subgrade reaction - method 1) or variable from a 
node to another (Variable modulus of subgrade reaction - method 2). 
 
Considering the entire foundation, Equation 1.9 can be rewritten in matrix form as: 
 

    skQ s         (1.10) 

 
Complete stiffness formulation of Modulus of subgrade reaction 
 
The foundation will deflect under the action of the total external forces {F} due to known 
applied loads {P} and the unknown soil reactions {Q}, where: 

     QPF       (1.11) 
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The equilibrium of the raft-soil system is expressed by the following matrix equation: 
 

       QPkp δ      (1.12) 

 
Considering the compatibility of deformation between the plate and the soil medium, where the 
soil settlement si equal to the plate deflection wi, Equation 1.10 for Winkler’s model can be 
substituted into Equation 1.12 as: 
 

        Pkk sp  δ       (1.13) 

 
Equation 1.13 shows that the stiffness matrix of the whole raft-soil system is the sum of the plate 
and the soil stiffness matrices, [kp]+[ks]. 
 
Equation solver of Modulus of subgrade reaction 
 
It should be noticed that the soil stiffness matrix [ks] is a purely diagonal matrix for Winkler’s 
model (methods 2 and 3). Therefore, the total stiffness matrix for the plate and the soil is a 
banded matrix. Then, the system of linear Equations 1.13 is solved by Banded coefficients-
technique. Since the total stiffness matrix is a banded matrix, the Equation solver 1.12 takes 
short computation time by applying these methods (2) and (3). 
 
The unknown variables in Equation 1.13 are the nodal displacements wi (wi =si) and the nodal 
rotations θxi and θyi about the x- and y-directions. After solving the system of linear equation 
1.13, substituting the obtained settlements si in Equation 1.10, gives the unknown contact forces 
Qi.  
 
 
1.3.3 Modification of modulus of subgrade reaction by iteration (method 4) 
 (Winkler’s model/ Continuum model) 
 
This method was proposed by Ahrens/ Winselmann (1984), which based on the soil is 
represented by variable moduli of subgrade reactions simulate to the Continuum model. In the 
method the raft and soil medium are treated separately, the results of one analysis forming the 
boundary conditions for the subsequent analysis as part of an iterative process. By modifying the 
variable moduli through the iterative process, the compatibility between the soil and raft 
interface is reached. The obtained results here are similar to those by Continuum model. The 
method is not only used for analysis the foundations by Continuum model but also by modulus 
of subgrade reaction with variable moduli. The first iterative cycle gives an analysis for modulus 
of subgrade reaction with variable moduli. The results at any intermediate iteration cycle may be 
considered as acceptable results, which in fact lie between Winkler’s model with variable moduli 
and Continuum model. 
 
The iteration process of this method can be described as follows: 
 
i) First, uniform distribution of contact pressure q(o) on the bottom of the foundation is 

assumed as: 
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f

o

A

N
q )(      (1.14) 

 
ii) For a set of grid points of Finite elements-mesh, the soil settlement si at point i due to 

contact forces in manner described later for Continuum model is obtained from: 
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iii) The spring stiffness ki from the soil settlement si and contact force Qi is computed from: 
 

)(

)(
)(

j
i

j
ij

i
s

Q
k       (1.16) 

 
iv) The foundation is analyzed as plate on springs, the spring coefficients are used to 

generate the soil stiffness matrix [ks]. This matrix will be a diagonal matrix. Therefore, 
adding the soil stiffness matrix [ks] to the plate stiffness matrix [kp] is easy. Then, the 
overall matrix for raft-soil system becomes a banded matrix. The entire system equation 
is expressed as 

 

        Pkk sp  δ      (1.17) 

 
v) A set of nodal displacements {δ} is obtained by solving the system equation (1.17) using 

the Banded coefficients-technique. 
 
vi) The soil settlements si are compared with the corresponding plate deflections wi, which 

were computed from the system equation (1.17). 
 

ii ws ε      (1.18) 

 
iv) If the accuracy does not reach to a specified tolerance ε a new set of contact forces are 

obtained using: 
 

)()()1(  j
i

j
i

j
i wkQ      (1.19) 

     

 
The steps ii to vii are repeated until the accuracy reach to a specified tolerance ε, which means 
that sufficient compatibility between the plate deflections wi and the soil settlements si are 
reached in the plate-soil interface. Figure 1.5 shows the iteration cycle of the iteration process. 
 
A good advantage of this method is that, it can easily eliminate the contact pressure if negative 
pressure appeared or consider nonlinear soil response. By analysis both the raft and subsoil 
separately, some former restrictions on maximum problem size can be avoided. Particularly, the 
soil flexibility matrix no longer needs to be inverted as followed by classical analysis of 
Continuum model. Generally, computing and storing the soil flexibility matrix is necessary only 
once, at the beginning of the analysis. During the second and subsequent iteration cycles, soil 
settlements can be determined by multiplying the flexibility matrix by the vector of modified 
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contact forces. Consequently, the maximum permissible number of nodes is greatly increased. It 
needs also less computation time than that of the elimination method used in the analysis of 
Continuum model. 
 

 
 
Figure 1.5 Iteration cycle of the iteration process 
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1.3.4 Modulus of compressibility method for elastic  
raft on half-space soil medium (method 5) 
(Isotropic elastic half-space soil medium - Continuum model) 

 
Continuum model was first proposed by Ohde (1942), which based on the settlement will occur 
not only under the loaded area but also outside (Figure 1.6). Otherwise, the settlement at any 
nodal point is affected by the forces at all the other nodal points.  
 

 
 
Figure 1.6 Continuum model  
 
 
Continuum model assumes continuum behavior of the soil, where the soil is represented as 
isotropic elastic half-space medium or layered medium. Consequently, this model overcomes the 
assumption of Winkler’s model, which does not take into account the interaction between the 
different points of the soil medium. Representation of soil as a continuum medium is more 
accurate as it realized the interaction among the different points of the continuum medium. 
However, it needs mathematical analysis that is more complex. The earliest application for rafts 
on continuum medium using Finite elements-method related to Cheung/ Zienkiewicz (1965). 
These authors considered the soil as isotropic elastic half-space medium. 
  
The isotropic elastic half-space soil medium based on Boussinesq's solution (1885). The medium 
in this solution is semi-infinite homogeneous isotropic linear elastic solid subjected to a 
concentrated force. The force acts normal to the plane boundary at the surface. This basic 
solution can be used to obtain the surface settlement of isotropic elastic half-space soil medium 
subjected to a concentrated load acting on the ground surface. 
  
Modulus of compressibility method for elastic raft on half-space soil medium (method 5), which 
is described here, considers the interaction between the raft and soil. It represents the soil as 
isotropic elastic half-space medium (Figure 1.7). 

Si, i
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Figure 1.7 Contact pressure distribution and soil settlement 

under elastic raft on Continuum medium 
a) Section parallel to x-direction 
b) Section parallel to y-direction 
c) Foundation plan 

 
 
Settlement at a depth z due to a concentrated load 
 
Figure 1.8 shows a concentrated load Q acting on the surface of isotropic elastic half-space 
medium. The settlement s(z) at a depth z due to this load can be expressed as: 
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Figure 1.8 Settlement s(z) due to a concentrated load on elastic half-space medium 
 
 
Settlement at the surface due to a concentrated load 
 
The settlement s(0) at the surface outside the point of application of the concentrated load is 
obtained by putting z = 0 in Equation 1.20: 
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Settlement at the surface under the concentrated load 
 
Equation 1.21 cannot be directly applied to determine the settlement under the concentrated 
load. Therefore, the concentrated load is converted to an equivalent uniform load over a 
rectangular area a×b. Then, the settlement s(0) at the center of the uniformly loaded rectangular 
area a×b can be obtained by integrating Equation 1.21 over that area as shown in Figure 1.9 and 
Equation 1.22. 
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Equation 1.22 after integration becomes: 
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Figure 1.9 Settlement due to loaded area a×b on elastic half-space medium 
 
 
Formulation of flexibility matrix of soil as elastic half-space soil medium 
 
Determination of the settlement si,i 
 
The settlement si,i of node i, due to contact force Qi on that node for isotropic elastic half-space 
soil medium can be expressed by: 
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Equation 1.24 is simplified to:  
 

iiiii Qcs   , ,       (1.25) 

 
The ratio between the settlement si,i of point i and the contact force Qi at that point is termed the 
flexibility coefficient ci,i [m/kN]. It can be recognized as the settlement of a point i due to a unit 
load at that point. 
 
Determination of the settlement si,k 
 
The settlement si,k of node i, due to contact force Qk on node k for isotropic elastic half-space 
soil medium, Figure 1.10, can be expressed by: 
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The ratio between the settlement si,k of point i and the contact force Qk at a point k is termed the 
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flexibility coefficient ci,i [m/kN]. It can be recognized as the settlement of a point i due to a unit 
load at a point k. 
 

 
 
Figure 1.10 Settlement si,k of node i due to contact force Qk at node k 
 
 
Assembling of the flexibility matrix for isotropic elastic half-space soil medium 
 
To find the settlement si at node i, Equation 1.25 is applied for that node i, while Equation 1.26 
is applied for the other remaining nodes considering contact forces over nodes. For a set of grid 
points of Finite elements-mesh, the settlement at point i is obtained from: 
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Equation 1.27 in series form is: 
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Equation 1.28 for the entire foundation in matrix form is: 
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Equation 1.29 is simplified to: 
 

    Qcs        (1.30) 
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To assemble the flexibility matrix of the soil [c], each node is loaded by a unit contact force and 
the resulting settlements in all remaining nodes and in the loaded node are calculated. Inverting 
the flexibility matrix [c], gives the [n×n] stiffness matrix of the soil [ks] corresponding to the 
contact forces at the n nodal points such that: 
 

    skQ s        (1.31) 

 
Complete stiffness formulation for isotropic elastic half-space soil medium 
 
The foundation will deflect under the action of the total external forces {F} due to known 
applied loads {P} and the unknown soil reactions {Q}, where: 
 

     QPF      (1.32) 
 
The equilibrium of the raft-soil system is expressed by the following matrix equation: 
 

       QPk p δ     (1.33) 

 
Considering the compatibility of deformation between the plate and the soil medium, where the 
soil settlement si equal to the platIe deflection wi, Equation 1.30 for Continuum model can be 
substituted into Equation 1.32 as: 
 

        Pkk sp  δ      (1.34) 

 
Equation 1.34 shows that the stiffness matrix of the whole raft-soil system is the sum of the plate 
and the soil stiffness matrices, [kp]+[ks].  
 
It should be noticed that the matrix [ks] is not compatible with the matrix [kp], because the 
degrees of freedom in Equation 1.31 differ from that in Equation 1.33. To overcome this 
problem, Equation 1.31 can be treated by extending the row and column of matrix [ks] in the 
same manner as the matrix [kp]. Consequently, the operation of matrix equations can then be 
accepted. 
 
Equation solver for isotropic elastic half-space soil medium 
 
It should be noticed that the matrix [ks] is full symmetrical matrix for isotropic elastic half-space 
soil medium. Therefore, the total stiffness matrix for the raft and the soil is also full symmetrical 
matrix. 
  
The system of linear equations is solved by Gauss elimination-technique. Since the total stiffness 
matrix is a full matrix, the equation solver (1.34) takes long computation time by applying this 
method. The unknown variables in Equation 1.34 are the nodal displacements wi (wi = si) and the 
nodal rotations θxi and θyi about the x- and y-directions. After solving the system of linear 
Equation 1.34, substituting the obtained settlements si in Equation 1.31, gives the unknown 
contact forces Qi. 
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1.3.5 Modulus of compressibility method for elastic 
  raft on layered soil medium (method 6) 

(Solving system of linear equations by iteration) 
(Layered soil medium-Continuum model) 

 
Introduction 
 
Available solutions for the analysis of foundations using Continuum model either representing 
the soil as isotropic elastic half-space soil medium or Layered soil medium were presented by 
many authors. But, the major difficulty for practical problems to apply this model lies in solving 
large set of equations, which requires large computer storage and long computation time. 
 
A number of attempts has been made to overcome this problem, among these are: 
 
Haung (1974) proposed a method for analyzing a symmetrically loaded foundation by taking 
into account the condition of symmetry. Consequently, the simultaneous equations can be 
reduced by considering only a part of the foundation rather than the whole foundation. The 
analysis is carried out for quarter of the foundation if the raft and soil are symmetrical about 
both x and y axes, or for half of the foundation if the raft and soil symmetrical about x-axis or y-
axis. Nevertheless, most of the foundations in practice are not symmetrically loaded. 
 
Haung (1974) proposed an iterative scheme to convert the overall stiffness matrix into a half 
band matrix by adding a part of the soil stiffness matrix to the plate stiffness matrix. Then, 
simultaneous equations can be solved by iteration method. Nevertheless, it was found that when 
the number of equations is large while the bandwidth is small, the displacements may not 
converge, and large bandwidth should be used. 
 
Cheung (1978) proposed a method to modify the overall stiffness matrix into a banded diagonal 
matrix which can be solved by using Banded coefficients-technique. Modification of this matrix 
based on the assumption that the deflection at a point is affected only by forces acting on 
surrounding points. Nevertheless, it is found that this foundation model is less accurate. 
 
Ahrens/ Winselmann (1984) and Stark/ Majer (1988) proposed an iteration method for the 
Continuum model using variable moduli of subgrade reactions. The iteration process is repeated 
until compatibility between the plate deformations due to the moduli of subgrade reactions and 
the soil settlements due to the corresponding contact pressures are reached. El Gendy (1994) 
showed that the number of iterative cycles required for this method increase with increasing the 
number of elements and the iteration may not converge for grate number of elements. 
 
Lopes/ Gusmão (1991) suggested that in many cases, the foundation subjects to symmetrical 
vertical loading. Therefore, the effects of some of the load components, such as moments, may 
be ignored and only the vertical reactions may be considered. In such cases, the size of vectors 
and matrices are considerably reduced. 
 
 El Gendy (1994) proposed an iterative scheme to convert the overall stiffness matrix into a 
banded matrix by converting the soil stiffness matrix to a diagonal matrix. Then, the 
simultaneous equations can be solved by Banded coefficients-technique. El Gendy (1998) 
modified the same iteration scheme by converting the soil stiffness matrix into equivalent 
symmetrical banded matrix. A comparison of this method with other available iteration methods 
shows that it converges more rapidly. The iteration method of El Gendy (1998) is considered in 
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the program ELPLA up Version 7.0, which is described in the next pages. 
 
Description of method 
 
To describe the proposed iteration method, consider a raft resting on a layered soil medium or 
isotropic elastic half-space soil medium. The contact pressure qi at node i under the raft is 
replaced by equivalent contact force Qi.  
 
For a set of grid points of Finite elements-mesh, the soil settlement si at point i due to contact 
forces in manner described earlier for Continuum model is obtained from: 
 





n

k
kkii Qcs

1
 ,       (1.35) 

 
Considering the entire foundation, Equation 1.34 can be rewritten in matrix form as: 
 

    Qcs        (1.36) 
 
Inverting the flexibility matrix [c], gives the stiffness matrix of the soil [ks] corresponding to the 
contact forces at the n nodal points such that: 
 

    skQ s        (1.37) 

 
Complete stiffness formulation 
 
The foundation will deflect under the action of the total external forces {F} due to known 
applied loads {P} and the unknown soil reactions {Q}, where:  
 

     QPF      (1.38) 
 
The equilibrium of the raft-soil system is expressed by the following matrix equation:  
 

       QPk p δ     (1.39) 

 
Considering the compatibility of deformation between the plate and the soil medium, where the 
soil settlement si equal to the plate deflection wi, Equation 1.37 for Continuum model can be 
substituted into Equation 1.39 as: 
 

        Pkk sp  δ      (1.40) 

 
It should be noticed that the plate stiffness matrix [kp] is a banded matrix and the soil stiffness 
matrix [ks] is a full unsymmetrical matrix for layered soil medium and a full symmetrical matrix 
isotropic elastic half-space soil medium. The major difficulty for practical problems lies in 
solving large set of equations, which requires large computer storage and long computation time. 
In order to overcome this problem, it is possible to convert the soil stiffness matrix [ks] to a 
symmetrical banded matrix  [kʹ] of half bandwidth equal to that of the plate stiffness matrix [kp]. 
Then, it can be easily added the matrix [kʹ] to the matrix [kp]. The resultant matrix will be also 
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banded matrix. Consequently, Equation 1.40 can be solved by using the Banded coefficients-
technique. 
 
Banded matrix formulation 
 
To illustrate how to convert the soil stiffness matrix [ks] to a symmetrical banded matrix, 
consider the simple example of the foundation shown in Figure 1.11. The foundation has 9 
nodes, each node has three unknown deformations w, θx and θy. There are 27 simultaneous 
equations. The foundation of 9 nodes yields to a plate stiffness matrix [kp] with a half bandwidth 
Nw = 15. 
 

 
 
Figure 1.11  Foundation of 9 nodes 
 
 
The matrix [ks] can be divided into two matrices [k1] and [k2] as follows: 
 

     21 kkks      (1.41) 

     

 
Equation 1.41 can be rewritten with matrix coefficients in details as: 
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where the matrix  [k1] is a symmetrical banded matrix has the same half bandwidth of matrix [kp] 
and the second matrix [k2] can be converted to a diagonal matrix as described in the iteration 
process. 
 
Iteration process 
 
The iteration process of the method can be described as follows: 
 
i) First, uniform distribution of contact pressure q(o) on the bottom of the foundation is
 assumed as: 

 

f

o

A

N
q )(      (1.43) 

 
ii) The soil settlements si due to contact forces Qi in manner described either earlier for 

isotropic elastic half-space soil medium or later for layered soil medium are obtained 
from: 

 
    Qcs        (1.44) 

 
iii) A set of nodal forces {QA} are computed from the matrix [k2] and the soil settlements
 {s} as: 
 

    skQA  2      (1.45) 
 
iv) The matrix [k2] is converted to equivalent diagonal matrix [k*2]. The coefficients of the
 diagonal matrix are obtained from: 
 

i

A
ii s

Q
k i,      (1.46) 

 
v) The equivalent symmetrical banded matrix [kʹ] for the soil stiffness matrix [ks] is: 
 

     21
 kkk     (1.47) 

 
vi) Now, adding the equivalent soil stiffness matrix [kʹ] to the plate stiffness matrix [kp] is 

easy. Then, the overall matrix becomes a banded matrix. The entire system equation is 
expressed as: 

 

        Pkk p  δ      (1.48) 

 
vii) A set of nodal displacements {δ} is obtained by solving the system equation 1.48 using
 the Banded coefficients-technique. 
 
viii) The soil settlements si are compared with the corresponding plate deflections wi, which 

were computed from the system equation 1.48. 
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ii ws ε      (1.49) 

 
ix) If the accuracy does not reach to a specified tolerance ε a new set of contact forces are 

obtained using: 
 

    skQA  2      (1.50) 

       

 
The steps ii to viii are repeated until the accuracy reach to a specified tolerance ε, which means 
that sufficient compatibility between the plate deflections wi and the soil settlements si are 
reached in the plate-soil interface. Figure 1.12 shows the flow chart of the iteration process. 
 
A good advantage of this iteration method is that it requires much less computer memory than 
the elimination method. It needs also less computation time than that of the elimination method 
used in the analysis of Continuum model. Much fewer cycles are needed to obtain a satisfactory 
accuracy, nearly two or three cycles. Consequently, the maximum permissible number of nodes 
is greatly increased. It can easily eliminate the contact pressure if negative pressure appeared or 
consider nonlinear soil response. By analysis both the raft and subsoil separately, some former 
restrictions on maximum problem size can be avoided. 
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Figure 1.12 Flow chart of the iteration process 
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1.3.6 Modulus of compressibility method for elastic 
 raft on layered soil medium (method 7) 
 (Solving system of linear equations by elimination) 
 (Layered soil medium - Continuum model) 
 
In reality, the soil profile is usually nonhomogeneous. The most likely profile is layered. In 
addition, foundations are almost never placed at the ground surface. Therefore, an improvement 
needs to be applied to half-space soil medium concerning the assumption that the load is applied 
at the surface of homogeneous isotropic elastic half-space medium. Representing the soil as 
layered continuum medium is more complicated than that as isotropic elastic half-space soil 
medium. Kany (1954) presented an extension of Ohde’s method (1942) to strip footing resting 
on nonhomogeneous and anisotropic medium. It can be applied for rafts as described in the 
following section. 
 
Settlement at a depth z due to a loaded area 
 
The settlement at the corner of a loaded area can be determined in a manner similar to that at the 
center of a loaded area, which was described in section 1.3.5. Thus, by integration of equation 
1.20 over a loaded area. Figure 1.13 shows q of size a loaded area a×b acting on the surface of 
isotropic elastic half-space medium. 
 

 
 
Figure 1.13 Settlement s(z) under the corner of a loaded area on elastic half-space medium 
 
 
According to Steinbrenner (1934), the settlement s(z) at a depth z under the corner of the loaded 
area is given by: 
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Settlement at the surface due to a loaded area 
 
The settlement s(0) of a point at the surface under the corner of a rectangular loaded area is 
obtained by putting z = 0 in Equation 1.51: 
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Where in Equations (1.50) and (1.51) is 22222    und   bamzbac   
 
Settlement of a finite layer due to a loaded area 
 
For the settlement Equations 1.51 and 1.52 presented above, it was assumed that the soil layer 
extends to an infinite depth. However, if a rigid base at a depth z=h underlies the soil layer, the 
settlement sh of the layer can be approximately calculated as (Figure 1.14): 
 

)()0( zsssh       (1.53) 

 
Subtracting Equation 1.51 from Equation 1.52 yields: 
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Equation 1.54 can be simplified to: 
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Figure 1.14 a) Isotropic elastic half-space soil medium 

b) Elastic layer on rigid base 
 
 
Settlement of multi-layers due to a loaded area  
 
Obviously, it can generalize this approach to consider multi-layers of soil. Each has different 
elastic material and thickness as shown in Figure 1.15. The vertical settlement of a layer l in an n 
layered system is given by: 
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The total settlement for n layered system is: 
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Considering the Poisson’s ratio vs for all soil layers is constant as its value for most soil types 
ranges between 0.3 and 0.5. 
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Figure 1.15 Layered system 
 
 
Settlement at an interior point of loaded area 
 
So far it has considered the settlement beneath a corner of a loaded area. To find the settlement 
at any other point the principle of superposition can be used. The settlement at an interior point 
of the rectangular loaded area is given by the sum of the settlements at the corners of four sub-
loaded areas. To determine the settlement coefficient f(l) for a layer l at an interior point i of the 
rectangular loaded area shown in Figure 1.16, the Formula of Kany (1974) can be applied as: 
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Where in Equation 1.58 is 22222    und   nnlnnn baMzbac   

 
The value zl means the level of the lower side of the layer l, from the foundation level.  
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Figure 1.16   Superposition of four loaded areas to find the settlement at an interior point i 
 
 
Settlement at a point outside the loaded area 
 
Adding and subtracting corner settlements for four loaded areas can obtain the settlement of any 
point outside the loaded area as shown in Figure 1.17. First, the settlement s1 as if the entire 
region defined by load q is determined. Then, the settlements due to the two edge loaded areas s2 
and s3 are subtracted. Finally, the settlement s4 is added since it has been subtracted twice in s2 
and s3. Using the same process, the settlement coefficient f(l) for a layer l at an exterior point i of 
the rectangular loaded area shown in Figure 1.17 is given by: 
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Figure 1.17   Superposition of four loaded areas to find the settlement at an exterior point i 
 
 
For any point i of coordinates (ζ, η) lies inside or outside the loaded area a×b, Figure 1.18, the 
settlement coefficient f(l) can be obtained according to Poulos/ Davis (1974) using the principle 
of superposition by the following general Equation 1.60: 
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Figure 1.19  Superposition of four loaded areas to find the settlement at any point i 

x

s

z 

z

b 

a 

q 

y

 i

η

ζ

x

z

b 
a 

q 

y
 i

η

ζ 

s

z

x

s

z

z

b 

a 

q 

y

 
i

η

ζ 

a) Point i lies inside the loaded area

b) Point i lies outside the loaded area

c) Point i lies outside the loaded area



Theory for the calculation of shallow foundations 
Chapter 1         Mathematical Models  
 

 1 - 35 

Formulation of the flexibility matrix for layered soil medium 
 
Determination of the settlement si,i  
 
Because the formula of Steinbrenner (1934) is valid for surface loadings, where the plate 
element is supposed to be rigid with respect to the subsoil, compatibility between plate 
displacement and surface settlement is required. Graßhoff (1955) defined the ACharacteristic 
point” to be that point of a surface area loaded by a uniformly distributed pressure, where the 
settlement due to that pressure is identical with the displacement of a rigid foundation of similar 
dimensions and loading. For a rectangular element a×b, the characteristic point takes the 
coordinates ac =0.87a and bc =0.87b as shown in Figure 1.19. 
  

 
 
Figure 1.19 Characteristic point of the settlement 
 
 
Considering the settlement under the characteristic point for the loaded area ai*bi around a node 
i, the settlement si,i of a node i, due to contact force Qi on that node for layered soil medium can 
be expressed as: 
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The ratio between the settlement si,i of a point i and the contact force Qi at that point is termed 
the flexibility coefficient ci,i [m/kN]. It can be recognized as the settlement of a point i due to a 
unit load at that point. 
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Determination of the settlement si,k 
 
For a loaded area ak×bk around node k, Figure 1.20, the settlement si,k of a node i, due to contact 
force Qk on node k for layered soil medium can be expressed as: 
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   (1.62) 

 
The ratio between the settlement si,k of a point i and the contact force Qk at a point k is termed 
the flexibility coefficient ci,i [m/kN]. It can be recognized as the settlement of a point i due to a 
unit load at a point k. 
 

 
 
Figure 1.20 Settlement si,k of a node i due to contact force Qk = qk ak bk at node k 
 
 
It can be noticed that the flexibility coefficients for isotropic elastic half-space medium may be 
obtained by applying the layered soil medium. In this case, the soil layer must extend to a depth 
that can be considered as an infinite depth (for example z ≈ 1010 [m]). In the program ELPLA, 
layered soil medium is available in methods (4), (6), (7), (8) and (9) while isotropic elastic half-
space medium is available only in method (5). 
 
Assembling of the flexibility matrix for layered soil medium 
 
To find the settlement si at a node i, Equation 1.61 is applied for that node i, while Equation 1.62 
is applied for the other remaining nodes considering contact forces over nodes. For a set of grid 
points of Finite elements-mesh, the settlement at a point i is obtained from: 
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Equation (1.63) in series form is: 
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Equation 1.64 for the entire foundation in matrix form is: 
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Equation 1.65 is simplified to: 
 

    Qcs        (1.66) 
 
To assemble the flexibility matrix of the soil [c], each node is loaded by a unit contact force and 
the resulting settlements in all remaining nodes and in the loaded node are calculated. Inverting 
the flexibility matrix [c], gives the [n × n] a stiffness matrix of the soil [ks] corresponding to the 
contact forces at the n nodal points such that: 
 

    skQ s        (1.67) 

 
Complete stiffness formulation for layered soil medium 
 
The foundation will deflect under the action of the total external forces {F} due to known 
applied loads {P} and the unknown soil reactions {Q}, where:  
 

     QPF       (1.68) 
 
The following matrix equation expresses the equilibrium of the raft-soil system: 
 

       QPk p δ      (1.69) 

  

 
Considering the compatibility of deformation between the plate and the soil medium, where the 
soil settlement si equal to the plate deflection wi, Equation (1.67) for Continuum model can be 
substituted into Equation (1.69) as:  
 

        Pkk sp  δ       (1.70) 

 
Equation (1.70) shows that the stiffness matrix of the whole raft-soil system is the sum of the 
plate and the soil stiffness matrices, [kp]+[ks].  
 
It should be noticed that the matrix [ks] is not compatible with the matrix [kp], because the degrees of 
freedom in Equation 1.67 differ from that in Equation 1.69. To overcome this problem, Equation 
1.67 can be treated by extending the row and column of matrix [ks] in the same manner as the matrix 
[kp]. Consequently, the operation of matrix equations can then be accepted.  
Equation solver for layered soil medium 
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It should be noticed that the matrix [ks] is full unsymmetrical matrix for layered soil medium. 
Therefore, the total stiffness matrix for the raft and the soil is also full unsymmetrical matrix. 
 
The system of linear equations is solved by Gauss elimination-technique. Since the total stiffness 
matrix is a full matrix, the equation solver 1.70 takes long computation time by applying this 
method. The unknown variables in Equation 1.70 are the nodal displacements wi (wi =si) and the 
nodal rotations θxi and θyi about the x- and y-directions. After solving the system of linear 
equation 1.70, substituting the obtained settlements si in Equation 1.67, gives the unknown 
contact forces Qi. 
 
 
1.3.7 Modulus of compressibility method for rigid  
 raft on layered soil medium (method 8) 
 (Layered soil medium - Continuum model) 
 
In many practice cases, treating the raft as completely rigid raft is convenient. Here, two 
conclusions can be drawn concerning raft settlement: 
 
˗ For a raft without moments or without eccentricity about both axes, the settlement will 

be uniform under the raft. 
 
˗ For a raft with moments, the raft will rotate as a rigid body and there will be differential

 vertical movement between points on the raft, but all points will remain in the same
 plane. 

 
Therefore, the displacements are considered linearly distributed on the bottom of the raft.  
 
The method developed here considers the interaction between the raft and soil. It represents the 
soil as layered medium or isotropic elastic half-space medium. 
 
In the general case of a foundation with an arbitrary unsymmetrical shape and loading, 
according to Kany (1972) the unknowns of the interaction problem, Figure 1.21, are: 
 
˗ n contact pressures qi, 
˗ Rigid body translation of the raft wo at the centroid, 
˗ Rigid body rotation θx of the raft about the x-axis of the geometry centroid, 
˗ Rigid body rotation θy of the raft about the y-axis of the geometry centroid. 
 
To determine these n+3 unknowns, n compatibility equations of rigid raft displacements with the 
soil settlements at the n nodal points are considered. In addition, the three equations of overall 
equilibrium of the raft are also considered. 
 
 
 
 
 
 
Formulation of the rigid raft on layered soil medium 
Soil settlements 
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To describe the method, consider a general raft resting on a layered soil medium (isotropic 
elastic half-space soil medium may be also applied) (Figure 1.21). The contact pressure qi at a 
node i under the raft is replaced by equivalent contact force Qi.  
 
For a set of grid points of elements-mesh, the settlement at a point i is obtained from: 
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 ,       (1.71) 

 
Considering the entire foundation, Equation 1.71 can be rewritten in matrix form as: 
 

    Qcs        (1.72) 
 
Inverting the flexibility matrix [c], gives the stiffness matrix of the soil [ks] corresponding to the 
contact forces at the n nodal points such that: 
 

    skQ s        (1.73) 

 

 
 

Figure 1.21 Contact pressure distribution and soil settlement under a rigid raft 
a) Section parallel to x-direction 
b) Section parallel to y-direction 
c) Foundation plan 
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si at a node i that has coordinates (xi, yi) from the geometry centroid: 
 

xiyioi yxws θtan θtan      (1.74) 

 
Equation 1.74 is rewritten in matrix form for the entire foundation as: 
 















































































x

y

o

nnn

w

yx

yx

yx

yx

s

s

s

s

θtan

θtan 

1

.........

1

1

1

...

33

22

11

3

2

1

    (1.75) 

 
Equation 1.75 is simplified to: 
 

     Δ TXs       (1.76) 
 
Equilibrium of the vertical forces 
 
The resultant N due to external vertical forces acting on the raft must be equal to the sum of 
contact forces 
 

nQQQQN  ...321     (1.77) 

 
Equilibrium of the moments 
 
The moment due to resultant N about the y-axis must be equal to the sum of moments due to 
contact forces about that axis 
 

nnx xQxQxQxQeN  ...    332211 
 

  (1.78) 

 
Similarly, the equilibrium equation for moments about the x-axis is 
 

nny yQyQyQyQeN  ...    332211     (1.79) 

 
Equations 1.77, 1.78 and 1.79 are rewritten for the entire foundation in matrix form as: 
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Equation 1.80 is simplified to: 
 

    QXN        (1.81) 
 
Substituting Equation 1.73 and 1.76 in Equation 1.81 gives the following linear system of 
equations: 
 

       Δ   T
s XkXN     (1.82) 

 
Solving this system of linear equations 1.82, gives wo, tan θx, and tan θy 
 
Substituting these values in Equation 1.76, then in Equation 1.73 gives the following matrix 
equation to find the n unknown contact forces. 
 

      Δ  T
s XkQ      (1.83) 

 
Substituting also the values wo, tan θx and tan θy  in Equation 1.72, gives the n settlements. 
 
Case of uniform settlement 
 
For a raft without moments or without eccentricity about both axes, the settlement will be 
uniform (si = wo) and the raft will not rotate (θxo = θyo = 0). Therefore, the unknowns of the 
problem reduce to n contact pressures qi and rigid body translation wo. 
 
Derivation of uniform settlement wo 
 
The derivation of the uniform settlement for the rigid raft can be carried out by equating the 
settlement si by  uniform settlement wo for all nodes in Equation 1.73. In this case, the contact 
forces can be rewritten as a function in the terms ki, j of the soil stiffness matrix as follows: 
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Carrying out the summation of the all contact forces: 
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The rigid body translation wo, which equals to the settlement si at all nodes, is obtained from: 
 







  n

j
ji

n

i

n

j
ji

n

i

n

i
i

o

k

N

k

Q
w

1
 ,

11
 ,

1

1     (1.86) 

 
Substituting this value of wo in Equation 1.73 gives the n unknown contact forces Qi. 
 
It should be noticed that Equation 1.85 is analogous to the Equation 1.8 for Winkler’s model. 
Therefore, the summation of terms ki,j (= N/wo ) may be used to determine the modulus of 
subgrade reaction ks. 
 
 
1.3.8 Modulus of compressibility method for flexible  

foundation on layered soil medium (method 9) 
(Layered soil medium - Continuum model) 

 
If the foundation is perfectly flexible (such as an embankment), then the contact stress will be 
equal to the gravity stress exerted by the foundation on the underlying soil.  
 
For the set of grid points of the foundation, the soil settlements are: 
 

    Qcs        (1.87) 
 
If the foundation carries concentrated loads, Equation 1.87 may not be able to determine the 
vertical stress at a point below the concentrated load. In this case, the system equation of the 
elastic solution can be used to simulate the flexible foundation by assuming very small raft 
rigidity D tends to zero, Equation (1.88). 
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In the Equation 1.88, the value of D nearly equal to zero when for an example Eb = 1×10-8 
[kN/m2] 
 
 
1.4 Symmetrical system 
 
In many practical problems, both the raft and loading are symmetric. Deninger (1964) by using 
the Finite differences and Haung (1974) by using the Finite elements analyzed a symmetrically 
loaded raft by taking into account the condition of symmetry. In this case, the raft system 
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equations can be solved by considering only a part of it rather than the entire raft. A quarter of 
the raft will be analyzed if the problem is symmetrical about both x-and y-axes, a half of the raft 
if the problem is symmetrical about x-or y-axis. Therefore, the computational time and computer 
storage can be considerably reduced. 
 
Derivation of flexibility coefficients for symmetrical system  
 
The nodal numbering of the set of grid nodes from 1 to n is replaced by another coordinate 
numbering from (1, 1) to (N, M) as shown in Figure 1.22. 
 

  
Figure 1.22 Numbering of nodes by symmetrical cases 
 
 
The settlement equation at a node i can be rewritten as: 
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where 
c(r, j), (l, m) Flexibility coefficient [m/kN] for a point of coordinate (r, j) due to a unit contact 

force Q(l, m) [kN] at a node of coordinate (l, m). 
l and r  Grid numbers in x-direction. 
m and j  Grid numbers in y-direction. 
 
Case of symmetry about the x-axis 
 
Due to symmetry about the x-axis the following conditions are drawn: 
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Then, the flexibility coefficients can be rewritten in a form of composite coefficients such as: 
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Equation 1.91 is simplified to: 
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In general form, the settlement equation in case of symmetry about the x-axis will be: 
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where: 
Cʹ(r, j), (l, m) Coefficient of flexibility in case of symmetry about the x-axis. 
 
The unknowns in the Equation 1.93 are the contact forces Q(1, 1) to Q([N+1]/2, M), as total 
M×(N+1)/2 values. 
 
Case of symmetry about the y-axis 
 
Due to symmetry about the y-axis the following conditions are drawn: 
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Then, the flexibility coefficients can be rewritten in a form of composite coefficients such as: 
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Equation 1.95 is simplified to: 
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In general form, the settlement equation in case of symmetry about the y-axis will be: 
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where: 
Cʹ(r, j), (l, m) Coefficient of flexibility in case of symmetry about the y-axis 
 
The unknowns in the Equation 1.97 are the contact forces Q(1, 1) to Q(N, [M+1]/2), as total 
N×(M+1)/2 values. 
 
Case of symmetry about x-and y-axes 
 
Due to symmetry about both x- and y-axes the following conditions are drawn: 
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Then, the flexibility coefficients can be rewritten in a form of composite coefficients such as: 
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Equation 1.99 is simplified to: 
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In general form, the settlement equation in case of symmetry about both x-and y-axes will be: 
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where: 
Cʹ(r, j), (l, m) Coefficient of flexibility in case of symmetry about both x-and y-axes 
 
The unknowns in the Equation 1.101 are the contact forces Q(1, 1) to Q([N+1]/2, [M+1]/2), as total 
(N+1)×(M+1)/4 values. 
 
The settlement equations of the antimetrical cases can be derived in a similar manner to that of 
symmetrical case. 
 
 
1.5 Antimetrical system 
 
If the raft is symmetric in shape and unsymmetric in loading, it will be possible to divide this 
general case of loading into two cases of symmetrical and antimetrical loading as shown in 
Figure 1.23. Then, the analysis can be carried out for half the raft twice. 
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Figure 1.23 General case of loading by symmetrical and antimetrical loading 
 
 
It should be noticed that by using the advantage of symmetry, the original flexibility matrix [c], 
which has dimension of [N×M]2 will be reduced to dimension of [(N+1/2)×M]2, [N×(M+1)/2]2 
and [(N+1)/2×(M+1)/2]2 in the cases of symmetry about x-axis, y-axis and double symmetry 
about both x-and y-axes, respectively. 
 
 
1.6 Boundary conditions by symmetrical and antimetrical cases 
 
General boundary conditions for analysis of the raft in bending are zero deflections w and 
rotations θx and θy along the fixed edge. Zero rotations about the x-axis (θx = 0) or the y-axis (θy 
= 0) along the simply supported edge whenever is applicable in direction x or y. 
 
For symmetrical and antimetrical cases of loading some corresponding appropriate boundary 
conditions must be applied to all nodes on the axis of symmetry as follows: 
 

i) A symmetry about x-axis makes the rotations θx for all the nodes along the x-axis to be 
zero, Figure 1.24a. 
  

ii) A symmetry about y-axis makes the rotations θy for all the nodes along the y-axis to be 
zero, Figure 1.24b. 
 

iii) An antisymmetry about x-axis makes the deflections w for all the nodes along the x-axis 
to be zero, Figure 1.24c.  
 

iv) An antisymmetry about y-axis makes the deflections w for all the nodes along the y-axis 
to be zero, Figure 1.24d. 

 
This can be easily handled by setting the element values of the corresponding column and row in 
the entire stiffness matrix zero. 
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Figure 1.24 Boundary condition for symmetrical and antisymmetrical cases 

 
 
1.7 Bilinear soil behavior 
 
A simplified way was supposed to improve the deformation behavior of the soil by dividing the 
stress settlement curve into two regions, Figure 1.25. In the first region the ground will settle 
until reaching an overburden load qv according to the modulus of compressibility Ws. In the 
second region after reaching the load qv  the ground will settle more under load q according to 
the  modulus of compressibility Es until reaching the total load qo. 
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Figure 1.25 Load settlement diagram (bilinear relation) 
 
 
Therefore, The settlement si of the foundation can be derived from two variations such that: 
 

iEiWi sss         (1.102) 

 
Equation 1.102 for the entire foundation in matrix form is: 
 

     EW sss      (1.103) 

 
It  can be generally said that the total contact pressure on the foundation is given by: 
 

iEivio qqq          (1.104) 

 
The bilinear relation of the soil deformation may be taken into consideration as follows: 
 
At first it should be carried out a primary calculation by one of the following two cases, 
             
Case (1): qvi < qo at all nodes i on the grid of the raft mesh 
 
The settlement equation will be: 
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   (1.105) 

 
Then, the raft equation due to bilinear soil behavior in a matrix form is given by: 
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               vWEsWsp QIckPkk   δ        (1.106) 

 

 
Case (2): qvi > qo at all nodes i on the grid of the raft mesh 
 
The settlement equation will be: 
 

    
    oWs
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Qsk

Qcs




 

 

 

     (1.107) 

 
Then, the raft equation due to bilinear soil behavior in a matrix form is given by: 
 

        Pkk Wsp  δ       (1.108) 

      

 
If one of the above two cases is not existed, an iterative solution for the settlement equation will be 
necessary. 
 
 
1.8 Variable foundation levels 
 
1.8.1 Variable foundation levels by neighboring rafts 
 
Sometimes, by determination the influence of the neighboring rafts or the interaction among 
system of rafts, the foundation levels of the rafts are variable as shown in Figure 1.26. In this 
case, the foundation levels of the rafts must be related to a specified datum Hm. 
 
The z-value of flexibility coefficient for any soil layer under the raft can be expressed by: 
 

mkmifiilikl HHtzz  )(     (1.109) 

 
It should be noticed that the foundation level Hm under the specified datum is negative. 
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Figure 1.26 Settlement influence of raft k on the raft i 
 
 
1.8.2 Variable foundation levels with variable raft thickness 
 
By analysis of rafts, there are three possibilities to define the raft thickness: 
 
a) The raft thickness for the entire raft is constant. In this case, there is only one foundation

 level tf (Figure 1.27a). 
 

b) Variable raft thickness with constant foundation level. In this case, the foundation level 
is also constant tf (Figure 1.27b).  

 
c) Variable raft thickness with variable foundation level. In this case, the foundation level is

 variable (Figure 1.27c). The z-value of flexibility coefficient for any soil layer under the
 raft can be expressed by: 

 
)( fkilikl tzz       (1.110) 
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Figure 1.27 Three possibilities concerning raft thickness 
 
 
1.9 Effect of groundwater pressure 
 
If the water table is located above the foundation, the foundation will be exposed to an 
additional negative pressure qw due to the effect of groundwater. In this case, the system 
equation will be: 
 

          wWsp QPkk  δ       (1.111) 

     

 
 
1.10 Effect of temperature difference 
 
Sometimes, a temperature difference Δt occurs between the upper and lower surface of the raft. 
An example for this case is when a fire oven is constructed directly on the raft in an industry 
structure.  
 
The deformation in the raft due to temperature difference can be evaluated as follows: 
 
The nodal displacement {δ}i at a node i of the raft must be replaced by {δ} - {Δ}, in which: 
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By assuming the warped surface as part of a sphere, it can be proven from geometry, Figure 
1.28, that: 
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[m]       
2

 Δ α 2

d

rT
t iT
i      (1.113) 

 
where: 
ti Amount of curvature [m] at a node i  
αT Coefficient of thermal expansion of concrete [1/°c] 
ri Distance [m] from a node i to the center of the raft where curling is zero 
d Thickness of the raft, [m] 
ΔT Temperature difference between the upper and lower surface of   
 raft in which ΔT = To - Tu, [°c]     
To  Temperature at the upper surface of the raft, [°c] 
Tu Temperature at the lower surface of the raft, [°c] 
 
Positive deflection when the raft warps down with a temperature at the top bigger than that at the 
bottom. Due to temperature difference, the total settlement on the foundation can be  
 
expressed as: 
 

     To sss      (1.114) 

 
where: 
{so} Vector of the settlement due to the loads acting on the foundation 
{sT} Vector of the additional displacement due to the temperature difference 
 
Then, the raft equation due to influence of temperature difference in matrix form is: 
 

           Tssp skPkk  δ      (1.115) 
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Figure 1.28 Temperature effect on the raft foundation 
 
 
1.11 Analysis of ribbed raft 
 
The traditional structural analysis of the foundation using Finite elements-method required two 
main types of elements. The first type is grid element used to analyze strip foundations or grid 
foundations. The second type of finite elements is the plate element used to analyze footings or 
rafts. The conventional methods for analysis of foundations consider only one type of elements. 
 
The combined problems of foundations with others stiffeners were treated by many authors. 
Deninger (1964) presented a method for analysis of rectangular rafts that was stiffened through 
rigid walls by Finite differences-method. Zienkiewicz/ Cheung (1970) introduced a solution for 
floor slab with edge beams. Lee/ Brown (1972) analyzed plane frame on two dimensional 
foundations by using beam elements for the frame and plate bending elements for the 
foundation. Mikhaiel (1978) considered the effect of shear walls and floor rigidity by using a 
combination between plate bending and plain stress elements. Bazaraa/ Shaheen/ Sabry/ Krem 
(1991) studied the effect of tie beams on the behavior of the footings. The footings were 
represented by the plate bending elements, while the tie beams were represented by grid 
elements. Bazaraa/ Ghabrial/ Henedy (1997) studied the effect of boundary retaining walls on 
the raft behavior by using a mesh of plate bending-plain stress element combinations. 
 
Ribbed raft may be used for many structures have heavy loads or large spans, if a flat level for 
the first floor is not required. Consequently the volume of concrete is reduced. Such structures 
are silos and elevated tanks. Although this type of foundation has many disadvantages if used in 
normal buildings, still uses by many designers. Such disadvantages are the raft needs deep 
foundation level under the ground surface, fill material on the foundation to make a flat level 
and an additional slab on the fill material to construct the first floor. The use of ribbed raft 
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relates to the simplicity of analysis by hand calculations. 
 
ELPLA was developed to analyze ribbed raft using a combination of two finite element types. 
The raft is represented by plate bending elements according to the two-dimensional nature of 
foundation. Grid elements are considered to represent the girder action along the raft. The whole 
stiffness matrix of the raft with girders is the sum of the two stiffness matrices of the raft and 
girders.  
 
Ribbed raft can be analyzed using plate elements together with grid elements placed in the 
region close to plate element boundaries as shown in Figure 1.29. To consider the compatibility 
of deformation between the plate and grid elements, a grid element has the same degree of 
freedom of plate element at each intersection node must be chosen. 
 

 
 
Figure 1.29  Finite elements-net of ribbed raft 
 
 
The equilibrium of the foundation for simple assumption model is expressed by: 
 

          QPkk gp  δ      (1.116) 

 

 
 
While for Winkler’s and Continuum models is expressed by: 
 

          Pkkk sgp  δ      (1.117) 
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2.1  Introduction 
 
Most of the available solutions used to determine the flexibility coefficient, or the modulus of 
subgrade reaction, assume that the subsoil consists of a homogeneous layer. In reality, the soil 
consists of different material features in vertical and horizontal directions. In practice, a number 
of vertical soil profiles defines the soil under the foundation. Each one has multi-layers with 
different soil materials. Therefore, three-dimensional coefficient of flexibility, or variable 
modulus of subgrade reaction, must be taken into consideration. Kany (1972) determined the 
two-dimensional flexibility coefficient for beam foundation by determining flexibility 
coefficients for the existing boring logs first. Then, by interpolation can obtain the other 
coefficients outside the boring logs. The following paragraph describes the methods that are 
available in program ELPLA to determine the three-dimensional coefficient of flexibility or 
variable modulus of subgrade reaction. 
 
 
2.2 Subareas method 
 
El Gendy (1994) proposed a simplified method to obtain the three-dimensional coefficient of 
flexibility or variable modulus of subgrade reaction by dividing the whole foundation area into 
subareas. Each subarea corresponds to one of the soil boring logs as shown in Figure 2.1. The 
method may be used if there is no great difference in the soil layers of the boring logs. 
  

 
 
Figure 2.1  Boring locations and subareas 
 
 
2.3 Interpolation method 
 
Kany/ El Gendy (1995) proposed an accurate method to determine the three-dimensional 
flexibility coefficient or variable modulus of subgrade reaction for irregular foundation by 
interpolation, as described below. 
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2.3.1 Determination of variable modulus of subgrade reaction ks 
 
Initially, a number of main moduli ksm equal to the number of boring logs should be determined. 
Each modulus corresponds to one of the soil boring logs and is calculated from the elastic 
material of that boring. 
 
The following steps and Figure 2.2 describe the determination of the main modulus ksm: 
 
i) First, assume average or linear distribution of contact pressure qi on the bottom of the 

foundation. 
 

ii) Find the soil settlements si due to assumed contact pressures. According to Ohde (1942), 
the settlement is given by: 
 





n

j
jjii qcs

1
 ,        (2.1) 

 
where  
ci, j Flexibility coefficient of a node i due to a unit load at field j.   
 

iii) Find the nodal modulus ki at each node on the bottom of the foundation due to the above 
soil settlements and pressures. According to Winkler (1867), the modulus ki at node i is 
given by: 
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i
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q
k         (2.2) 

 
iv) Find the mean modulus ksm for the whole foundation area of nodes n 
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      (2.3) 

 
 The steps ii to iv are repeated for each boring. 
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Figure 2.2 Determination of main modulus ksm 
 
 
Once the mean moduli ksm  has been calculated, the variable modulus of subgrade reaction ks can 
be determined for all nodes on the bottom of the slab as follows 
 
It is assumed that the foundation area is divided into three region types as shown in Figure 2.3. 
 
Type I 
This region is a triangular region. Three boring logs confine such a region. To determine the 
modulus ks for a node lying at a point (x, y) in a triangular region, assumes a plane function 
passed through the three boring logs to represent the modulus ks such that 
 

cybxaks       (2.4) 

 
Such a function will involve three undetermined coefficients: a, b and c. These coefficients can 
be determined using a system of three linear equations consists of the known mean moduli ksm 
and coordinates (x, y) for the three boring logs. Figure 2.3 illustrates an example of region type I 
through the dark shaded area, which is confined by boring logs B1, B3 and B4. 
 
Type II 
One or more sides of the foundation and two boring logs confine this region. Using a linear 
interpolation between the mean moduli ksm for the two boring logs, can obtain the modulus ks for 
a node lying in this region. Equation 2.5 and Figure 2.3 indicate an example for region type II 
through the area confined by boring logs B1, B4 and foundation sides. 
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 smsmsms kk
l

kk 121 η
     (2.5) 

 
where  
k1

sm and k2
sm  Mean moduli of boring logs B1 and B2, respectively 

l   Distance between boring B1 and B2 
η  Distance between the node and boring B1 
 
Type III 
One or more sides of the foundation and one boring confine this region. The modulus ks for a 
node lying in this region is equal to the mean modulus ksm of that boring. Figure 2.3 indicates an 
example for region type III through the area confined by boring B3 and foundation sides. 
 

 
 
Figure 2.3 Boring locations and region types 
 
 
2.3.2 Determination of three-dimensional coefficient of flexibility ci, j   
 
In a similar way to the previous analysis for Winkler’s model, the foundation area is divided into 
the same three region types. Equation 2.4 for region type I can be rewritten as: 
 

cybxac ji  ,      (2.6) 

 
As by determination of the main moduli ksm for Winkler’s model, main flexibility coefficients 
cm i, j are determined for boring logs. Then, the undetermined coefficients a, b and c in this case, 
are obtained from the mean flexibility coefficients cm i, j of the three boring logs and their 
coordinates (x, y). Equation 2.5 for region type II can be rewritten as: 

B2

B1

B3

l

k
k2

s

k1
s

B4

Region type II

Region type I

Region type III

η



Theory for the calculation of shallow foundations 
Chapter 2          Foundations on Irregular Subsoil  
 

 2 - 6 

 jimjimjimji cc
l

cc  , 
1

 , 
2

 , 
1

 ,

η
     (2.7) 

 
where  
c1

m i, j  and c2
n i, j  Mean flexibility coefficients of boring logs B1 and B2, respectively. 

 
Region type III is the simplest one. The flexibility coefficient ci, j of this region is determined 
from the material of its corresponding boring. 
 
It is important to note that: 
 
˗ If only two boring logs define the subsoil under the foundation or the boring logs lie in

 the same line, region type I will be eliminated.  
 

˗ However the above analysis of three dimensional subsoil is derived for isolated
 foundation, but it is also possible to use this analysis for system of footings or
 foundations as shown in Figure 2.4. 
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Figure 2.4  System of three foundations I, II and III with two additional 
  external foundations IV and V on irregular subsoil 
 
 
2.3.3 Numbering of boring logs 
 
The arrangement of subareas or triangle regions leads to different results of modulus of subgrade 
reactions or flexibility coefficients. Therefore, a role may be used here to set the subareas for the 
subareas method or triangle regions for the interpolation method automatically. According to the 
role, defining a boring as pole for the other boring logs is necessary. This boring must be 
numbered by No. 1. Figure 2.5 shows different arrangements of triangle regions when five 
boring logs defining the subsoil. 
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Figure 2.5 Different arrangements of triangle regions a to e  
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2.3.4 Determination of limit depth for irregular subsoil 
 
The assumption of isotropic elastic half-space soil medium requires an infinite soil layer having 
the same compressibility under the foundation. Practically, the soil consists of many layers with 
different soil materials. For layered soil medium the number of layers in a boring to be 
considered when determining the flexibility coefficient ci,k depends on the level of the rigid 
surface or on the limit depth zg where no settlement occurs. The limit depth zg in a system of 
foundations is the level of which the stress σU reaches a standard ratio ξ of the initial vertical 
stress σV as indicated in Figure 2.6 and Equation 2.8. 
 

VU σ  ζσ       (2.8) 

 
where 
σU = σE +σD Stress due to the foundation load and the external foundation loads, [kN/m2] 
σE  Stress due to the foundation load, [kN/m2] 
σD  Stress due to the external foundation loads, [kN/m2] 
σV  = Σγz Stress due to the self-weight of the soil layers, [kN/m2] 
γ  Unit weight of the soil layer, [kN/m3] 
z  Depth of the soil layer, [m] 
 
Examination from Amman/ Breth (1972) showed that the values ξ may be taken as ξ = 0.8, 
especially for reloading soil. The standard value of ξ according to DIN 4019 is  ξ = 0.2. 
 

 
 
Figure 2.6 The limit depth zg under a foundation 
 
 
 
The problem by the three-dimensional subsoil model is that, many boring logs characterize the 
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soil under the system of foundations. Kany/ El Gendy (1997) solved this problem for the three-
dimensional subsoil model. In which main limit depths for each foundation should be 
determined. Each limit depth corresponds to one of the soil boring logs and that foundation. It is 
determined from the material of that boring and the stress under that foundation. The soil 
pressures under foundations are assumed to be known and distributed uniformly on the bottom 
of the foundations.  
 
To take into account the irregularity of the subsoil material in x and y directions considering the 
effective soil layers, the flexibility coefficient ci,k must be determined using the limit depths. 
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Example 2.1: Analysis of a square raft on irregular subsoil  
 
1 Description of the problem 
 
This example is carried out to show the influence of irregular subsoil on the values of 
settlements, contact pressures and moments. 
The analysis of the square raft is carried out by the two familiar types of soil models: Winkler’s 
and Continuum models for elastic foundations, besides the analysis of rigid raft on Continuum 
model, using the following three calculation methods:  
 
Method (3): Variable modulus of subgrade reaction method 
Method (7): Modulus of compressibility method 
Method (8): Rigid raft on compressible subsoil 
 
A square raft of 10 [m] side is subdivided into 144 square elements as shown in Figure 2.7. The 
raft thickness is d = 0.4 [m]. 
 
2 Soil properties 
 
Three boring logs characterize the subsoil under the raft. Each boring has a soil layer of 
thickness 10 [m], resting on a rigid base as shown in Figure 2.7. The modulus of compressibility 
Es represents the irregularity of the soil material in x- and y-directions, which in this example is 
chosen to be variable.  
 
The moduli of compressibility of the three borings are: 
 
 Es1 = 6666.67 [kN/m2] 
 Es2 = 1.5 × Es1 [kN/m2] 
 Es3 = 2.0 × Es1 [kN/m2]  
with average value of Es = 10000 [kN/m2] 
 
The moduli of compressibility lead to the following mean moduli of subgrade reactions for the 
three borings: 
 
ksm1 = 1448  [kN/m3] 
ksm2 = 1.5 × ksm1 [kN/m3] 
ksm3 = 2.0 × ksm1 [kN/m3] 
with average value of ksm = 1563 [kN/m3] 
 
Possion’s ratio is νs = 0.3 for the soil material of the borings.  
 
3 Loads 
 
The external loads are chosen to be symmetrical about the raft center. The loads are four 
symmetrically loads, each of P = 500 [kN] as shown in Figure 2.7. The self weight of the raft is 
ignored. 
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Figure 2.7 a) Raft numbering, loading and dimensions  
   b) Soil cross-section 
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Figure 2.8 Boring  locations and subareas (Subareas method)   
 
 

 
 
Figure 2.9 Boring  locations and region types (Interpolation method)  
 
 
4 Raft material 
 
The raft material is supposed to have the following parameters: 
  
Young’s modulus   Eb = 2 × 107 [kN/m2] 
Poisson’s ratio   νb  =  0.25  [-] 
Unit weight of raft material  γb  = 0.0   [kN/m3] 
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Unit weight of raft material is chosen γb = 0.0 to neglect the own weight of the raft. 
 
5 Analysis of the raft 
 
For comparison, the flexibility coefficient and the modulus of subgrade reaction are determined 
by the following two methods: 
 
˗ Subareas method, Figure 2.8. 
˗ Interpolation method, Figure 2.9. 
 
6 Results and evaluation 
  
Figures 2.10 and 2.11 show the contour lines of settlements for each of the two types of soil 
models (Winkler's model (3) and Continuum model (7)), while  Figures 2.12 shows contour lines 
of settlements for the rigid raft on the Continuum model (8). The flexibility coefficients for the 
three calculation methods are obtained using the interpolation method. As expected, the 
settlement form is unsymmetric about the raft center when the irregularity of the subsoil is 
considered, although the raft is symmetric in shape and carries symmetrical loads. The Figures 
2.10 to 2.12 show that the boring which has minimum value of Es (boring B1) leads to higher 
settlements at nodes close to that boring. 
 
Figure 2.13 shows the contour lines of settlements when the soil is a regular layer having a 
constant value of Es = 10000 [kN/m2]. A comparison between Figure 2.12 and Figure 2.13 
shows that a great variation of settlement shape when using variable Es values. This means that 
the detailed variation of soil properties with vertical and horizontal directions must be taken into 
account. 
 
Figures 2.14 to 2.17 present a comparison between the results computed by the interpolation 
method and that of the subareas method. Figures 2.14 and 2.15 show the contact pressures at the 
edge of the raft (node 157 to 169) for the two types of soil models (Winkler’s model (3) and 
Continuum model (7)), while Figure 2.16 shows the contact pressures at the edge of the raft for 
the rigid raft on Continuum model (8). Figure 2.17 shows the bending moments at the middle of 
the raft, section I-I, for Continuum model (7). From the above comparison, it can be concluded 
that the continuity requirement of the soil material between the adjacent borings is not met when 
using the subareas method. Therefore, it is expected that the results of the subareas method will 
not be as accurate as those of the interpolation method, especially if the borings have  great 
differences in the soil material. This is explained in Figures 2.14 to 2.17 where the subareas 
method leads to a sudden change in the contact pressures and moments between two adjacent 
subareas. 
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Figure 2.10 Contour lines of settlements [cm] for Winkler’s model (3) 
 
 
 

 
 
Figure 2.11 Contour lines of settlements [cm] for rigid raft on Continuum model (8) 
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Figure 2.12 Contour lines of settlements [cm] for Continuum model (7) 
 
 

 
 
Figure 2.13 Contour lines of settlements [cm] for Continuum model (7), constant Es 
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Figure 2.14 Contact pressures at the raft edge for Winkler’s model (3) 
 
 

 
 
Figure 2.15 Contact pressures at the raft edge for Continuum model (7) 
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Figure 2.16 Contact pressures at the raft edge for rigid raft on Continuum model (8) 
 
 

  
Figure 2.17 Moments at the raft middle for Continuum model (7) 
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Example 2.2: Analysis of an irregular raft on irregular subsoil 
 
1 Description of the problem 
 
A general example is carried out to show the applicability of the different mathematical models 
for analysis of irregular rafts on irregular subsoil. 
In one case the raft carries many types of external loads: concentrated loads [kN], uniform load 
[kN/m2], line load [kN/m] and moments [kN.m] in both x-and y-directions as shown in Figure 
2.18. 
 

 
 
 
Figure 2.18 Raft dimensions in [m] and loads 
 
2 Soil properties 
 
Three boring logs characterize the subsoil under the raft. Each boring has three layers with 
different soil materials. The moduli of compressibility of the three layers for loading are Es1 = 
9500 [kN/m2], Es2 = 22000 [kN/m2] and Es3 = 120000 [kN/m2] while for reloading are Ws1 = 
26000 [kN/m2], Ws2 = 52000 [kN/m2] and Ws3 = 220000 [kN/m2]. Poisson’s ratio is 0.0 [-] for all 
soil layers. The level of foundation is df = 2.7 [m] while the level of ground water is GW = 1.5 
[m]. Unit weight of the soil above the ground water is γs = 19 [kN/m3] while under the ground 
water is γʹs = 9 [kN/m3]. The effect of reloading and water pressure is taken into account. Figure 
2.19 shows boring logs and locations. 
 
3 Raft material and thickness 
 
The raft material is supposed to have the following parameters: 
Young’s modulus   Eb = 2 × 107  [kN/m2 ] 
Poisson’s ratio   νb  =  0.25  [-] 
Unit weight of raft material  γb  =  0.0   [kN/m3] 
The raft thickness   d  =  0.5   [m] 
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Unit weight of raft material is chosen to be γb = 0.0 to neglect the own weight of the raft in the 
analysis. 
 

 
 
Figure 2.19 a) Boring locations and interpolation regions 

b) Boring logs B1 to B3 
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4 Analysis of the raft 
 
The analysis of the raft is carried out by the eight mathematical calculation methods in Table 
2.1. The methods  are represented by the three subsoil models: simple assumption, Winkler’s and 
Continuum models. 
 
Table 2.1 Calculation methods 
 

Method 
No. 

Method 

 
1 
2 
3 
4 
5 
6 
7 
8 

 
Linear contact pressure 
Constant modulus of subgrade reaction 
Variable modulus of subgrade reaction 
Modification of modulus of subgrade reaction by iteration 
Modulus of compressibility method for elastic raft on half-space soil medium 
Modulus of compressibility method for elastic raft on layered soil medium (iter.) 
Modulus of compressibility method for elastic raft on layered soil medium (eli.) 
Modulus of compressibility method for rigid raft on layered soil medium 

 
To carry out a comparison for the different calculation methods and mathematical models, the 
example is analyzed first by the modulus of compressibility method (7) for layered soil medium. 
Then, the same example with the same loads is analyzed again by the other seven different 
numerical calculation methods. The elastic parameters are assumed to represent the same type of 
soil, which is considered in the first analysis. By weighing the elastic parameters of each layer in 
a multilayered system according to its influence on settlement an "equivalent" modulus of 
compressibility for the entire subsoil mass for isotropic elastic half space model (5) and an 
"equivalent" constant modulus of subgrade reaction for Winkler’s model (2) are determined. 
Main moduli of subgrade reactions for the three boring logs can be also determined for 
Winkler's model (3). The equivalent elastic parameters can then be used to obtain the 
settlements, contact pressures, moments and shear forces in the raft by the different calculation 
methods.  
 
The equivalent elastic parameters are: 
 
For isotropic elastic half space model (5) 
Esm = 9500 [kN/m2] 
 
For constant modulus of subgrade reaction model (2) 
ksm = 3517 [kN/m3] 
  
For variable modulus of subgrade reaction model (3) 
ksm1 = 5254 [kN/m3] for Boring B1 
ksm2 = 2982 [kN/m3] for Boring B2 
ksm3 = 2315 [kN/m3] for Boring B3 
 
5 Results and discussion 
 
The extreme values of the results are given in Table 2.2. Figures 2.20 to 2.28 show the 
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settlements and contact pressures on the raft for the eight calculation methods. 
Table 2.2 Maximum and Minimum values of settlements s and contact pressures q for the 
  different calculation methods 
 

Method 
smax. 
[cm] 

smin. 
[cm] 

qmax. 
[kN/m2] 

qmin. 
[kN/m2] 

 
Linear contact pressure (1) 
Constant modulus of subgrade reactions (2) 
Variable modulus of subgrade reactions (3) 
Modification of modulus of subgrade (4) 
Isotropic elastic half space (5) 
Modulus of compressibility-elastic raft (6 and 7) 
Modulus of compressibility-rigid raft (8) 

- 
5.38 
6.52 
4.42 
11.28 
4.42 
4.24 

- 
0.46 
0.47 
1.15 
8.51 
1.15 
1.51 

127 
189 
194 
586 
572 
586 
560 

 
65 
16 
18 
19 
16 
19 
48 

 

 
 
Figure 2.20 Contour lines of settlements [cm] and contact pressures [kN/m2] in bracts for  

constant modulus of subgrade reaction method (2) 
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Figure 2.21 Contour lines of settlements [cm] for variable modulus of subgrade reactions (3) 
 
 

 
 
Figure 2.22 Contour lines of settlements [cm] for isotropic elastic half space model (5) 
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Figure 2.23 Contour lines of settlements [cm] for methods (4), (6) and (7) 
 
 

 
 
Figure 2.24 Contour lines of settlements [cm] under rigid raft (8) 
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Figure 2.25 Contour lines of contact pressures [kN/m2] by method (1) 
 
 

 
 
Figure 2.26 Contact pressures [kN/m2] for isotropic elastic half space model (5) 
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Figure 2.27 Contact pressures [kN/m2] for methods (4), (6) und  (7) 
 
 

 
 
Figure 2.28 Contact pressures [kN/m2] under the rigid raft (8) 
 
 
Through Table 2.2 and Figures 2.20 to 2.28 the following conclusions can be drawn: 
  
˗ It is important to say that the linear contact pressure method (1) does not depend on the 

behavior of the subsoil mass below the foundation and there is no compatibility between 
raft deformation and soil settlement in this method.  
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˗ The elastic parameters for isotropic elastic half space (5) and constant modulus of 
subgrade reaction (2) are valid for the whole subsoil mass but for the variable modulus of 
subgrade reaction (3) are variable from a node to another.  

 
˗ For the two iteration methods (4 and 6) and rigid raft (8), the elastic parameters are the 

same as those of the first analysis method (7) and can be taken without any change.  
 
˗ The influence of surrounding structures and external loads can be taken into 

consideration only for the Continuum model (methods 4, 5, 6, 7 and 8).  
 

˗ The influences of temperature change cannot be taken into consideration for the Linear 
contact pressure method (1).  
 

˗ Furthermore, the influence of reloading can be taken into consideration only for the  
methods 4, 6, 7 and 8.  
 

˗ The results of calculation of the rigid raft (8) do not change from raft thickness d = drigid 
to d = ∞. 
 

˗ As from the assumption of the isotropic elastic half space model (5), the soil under the 
foundation extends to an infinitely thick layer. The settlement will be similar in shape but 
greater in value to that of the layered model (7), Figures 2.21 and 2.23. 
 

˗ The Continuum model (methods 4, 5, 6, 7 and 8) shows that the contact pressure is 
minimum on the middle of the raft and maximum at its edges, Figures 2.26, 2.27 and 
2.28. 
 

˗ Figure 2.25 shows that the contact pressure for the Linear contact pressure method (1) 
takes linear form under the raft. 
 

˗ As from the assumption of Winkler’s model (method 2) the soil pressure qi at any point i 
will be equal to the settlement si at that point multiplied by the modulus of subgrade 
reaction ks. The contour lines of contact pressures will be similar to that of settlements, 
only the values of si should be multiplied by ks. Therefore, the contour lines of both 
contact pressures and settlements are plotted in a figure for the Winkler’s model (2) as 
shown in Figure 2.20. 
 

˗ It can be seen from Table 2.2 that the maximum and minimum values of contact 
pressures for the Linear contact method (1), constant modulus of subgrade reaction (2) 
and variable modulus of subgrade reaction (3) are nearly the same. In addition, the 
maximum and minimum values of settlements for constant and variable modulus of 
subgrade reaction methods (methods 2 and 3) are nearly the same. 
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Example 2.3: Analysis of system of footings on irregular subsoil 
 
1 Description of the problem 
 
The influence of irregularity of the subsoil material on the behavior of foundations is illustrated 
through the study of the differential settlements for system of 9 footings. Consider the group of 
footings shown in Figure 2.29 and Table 2.3. Thickness of footings is d = 0.5 [m]. Unit weight 
of the footing is γf =25 [kN/m3]. Arrangement of footings and footing loads are shown in Figure 
2.29a.  
 
2 Soil properties 
 
The group of footings resting on a three-dimensional subsoil model. Four boring logs 
characterize the subsoil under the footings. Each boring has three layers as shown in Figure 2.29 
and Table 2.4. Poisson’s ratio is νs = 0.3 [-] for all soil layers. The level of ground water is GW = 
1.3 [m] while the level of foundation for all footings is tf = 2.2 [m] under the ground surface. The 
effects of reloading and water ground are taken into account. Boring locations and section 
through B1-B2 are shown in Figure 2.29. 
 
Table 2.3 Loads, dimensions and origin coordinates of the footings 
 

Footing 
No. 

Load 
P 

[kN] 

Dimensions Origin coordinates 

Length 
[m] 

Width 
[m] 

x [m] y [m] β [°] 

 
1 

 
2500 

 
2.0 2.0 1.00 1.00 

 
0 

 
2 

 
900 

 
1.5 1.5 6.25 1.25 

 
0 

 
3 

 
800 

 
1.5 1.5 11.25 1.25 

 
0 

 
4 

 
2500 

 
2.0 2.0 1.50 6.00 

 
0 

 
5 

 
5400 

 
3.0 3.0 5.00 6.00 

 
0 

 
6 

 
950 

 
1.5 1.5 11.25 6.25 

 
0 

 
7 

 
5400 

 
4.5 2.0 2.12 8.7 

 
45 

 
8 

 
3000 

 
2.5 2.0 5.75 11.00 

 
0 

 
9 

 
2000 

 
2.0 1.5 10.00 10.25 

 
0 
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Figure 2.29 a) Arrangement of footings, footing loads [kN] and boring locations 
  b) Section through B1-B2 

2.0

x [m]10.08.06.04.02.0

12.0

10.0

8.0

6.0

4.0

0.0 12.0

y [m]

B2

(9
(8

(7

(6(5(4

(3(2(1
) 

B1

B4

B3
2700

2000

3000

2500
5400

950

800900

2700

2500

(11.00
)(12.00

(1.30
)

Sand

(40.00

(0.00

Silt

a

b



Theory for the calculation of shallow foundations 
Chapter 2       Foundations on Irregular Subsoil  
 

 2 - 30 

Table 2.4 Soil material and layer levels for the four borings 
 

Layer 
No. 

Type of soil 

Layer level 
under the 
ground 

surface z 
[m] 

Modulus of elasticity for 
Unit weight 
of the soil 
γs [kN/m3] 

loading 
Es [kN/m2] 

reloading 
Ws [kN/m2] 

 
1 

 
Sand 

 
1.3 98 000 135 000 

 
19 

 
2 

 
Sand 

 
12/11/14/10 98 000 135 000 

 
11.2 

 
3 

 
Silt 

 
40 9 500 12 000 

 
12 

 
3 Analysis and results 
 
Because the footing dimensions are relatively small, the footings may be treated as rigid footings 
resting on compressible subsoil. In this case, it is enough to determine the soil settlement at the 
footing centers. For a good judgment on the proposed analysis, the group of footings has been 
treated four times according to the following cases: 
 
i) The limit depths for all boring logs are obtained due to the maximum loaded footing 

(footing 5). 
 

ii) The limit depths for all boring logs are obtained due to the minimum loaded footing 
(footing 3). 
 

iii) Without limit depths and the last layer for each boring extend to a depth of 40 [m] below 
the ground surface. 
 

iv) The limit depth is obtained through interpolation. 
 
The limit depths are determined at the level of which the stress σU due to footings reaches the 
ratio ζ = 0.2 of the initial vertical stress σV. 
The limit depths of boring B1 to B4 due to footing 3 are shown in Figure 2.30 while those due to 
footing 5 are shown in Figure 2.31. The limit depths for the maximum loaded footing (footing 5) 
are ranged from 16.90 [m] to 17.00 [m] while those for the minimum loaded footing (footing 3) 
are ranged from 11.31 [m] to 11.39 [m]. Table 2.5 shows the central settlements of the footings 
for the four cases. As expected, the numerical results show that the limit depths have a 
significant influence on the settlement of the footings. It can be seen from Table 2.5 that there is 
a great difference in the settlement values by applying the four cases. Case i gives high values of 
settlement where that of case ii is small and that of case iii is very high. This proved that the 
interpolation analysis is a suitable procedure to study the interaction of a group of footings. 
Table 2.5 shows also that cases i and ii give only the accurate settlements under footings 5 and 3, 
respectively. Where the settlement under footing 5 is s5 = 3.70 [cm] while that under footing 3 is 
s3 = 0.48 [cm]. 
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Figure 2.30 Limit depths of boring logs B1 to B4 due to footing 3 
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Figure 2.31 Limit depths of boring logs B1 to B4 due to footing 5 

zg1 (16.95) zg4 (16.90) 

B1 B4

12.00

0.00

2.00

4.00

6.00

8.00

10.00

14.00

18.00

16.00

B4

12.00

0.00

2.00

4.00

6.00

8.00

10.00

14.00

18.00

16.00

σV = 207 σU = 40

σE = 604

B3 B2

σU = 40 σU = 40

σU = 40

σV = 205 σV = 208

σV = 209

zg3 (17.00) zg2 (16.92) 

12.00

0.00

2.00

4.00

6.00

8.00

10.00

14.00

18.00

16.00

σE = 604 σE = 604

σE = 604



Theory for the calculation of shallow foundations 
Chapter 2       Foundations on Irregular Subsoil  
 

 2 - 33 

Table 2.5 Central settlements of the footings 
 

Footing No. 

Calculation of central settlement [cm] based on 

Limit depths 
related to 
footing 5 

Limit depths 
related to 
footing 3 

Without limit 
depths 

z = 40 [m] 

Limit depths 
related to its 

corresponding 
footing 

 
1 

 
2.58 0.65 6.07 

 
1.74 

 
2 

 
2.55 0.51 6.19 

 
1.80 

 
3 

 
1.81 0.48 4.86 

 
0.48 

 
4 

 
4.15 1.13 8.35 

 
3.99 

 
5 

 
3.70 0.44 8.05 

 
3.70 

 
6 

 
2.30 0.27 5.91 

 
1.55 

 
7 

 
4.56 1.62 8.67 

 
4.34 

 
8 

 
3.48 0.53 7.59 

 
3.26 

 
9 

 
2.33 0.03 6.05 

 
1.72 
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In many situations, it becomes important to assess the behavior of a foundation due to its 
interaction with another neighboring foundation or external load. 
 
First, It must be distinguished between two types of problems concerning neighboring 
foundations: 
 

˗ The first problem occurs when new building is constructed beside existing one. In this 
case, the new building will cause an additional settlement under the existing structure 
due to the increase of stress in soil. 

 
˗ The second problem occurs when structures are constructed simultaneously. In this case, 

 there will be interaction of foundations due to the overlapping of stresses through the 
soil medium, however the structures are not statically connected. The interaction of 
foundations will cause additional settlements under all foundations. 

 
The study of interaction between a foundation and another neighboring foundation or an external 
load has been considered by several authors. Mikhaiel (1978) presented an application on the use 
of the elastic half space model in the determination of the effect of neighboring loads on the 
existing building. Selvadurai (1983) examined the interaction between a rigid circular 
foundation and an external load. 
 
The additional settlement due to neighboring foundation, external loads and buried structures 
can be considered as follows indicated in the next paragraphs. 
 
 
3.2  Influence of neighboring foundations 
 
Figure 3.1 shows a neighboring foundation B. This foundation causes an additional settlement 
on the examined foundation A. The additional settlement due to neighboring foundation can be 
considered as follows : 
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Figure 3.1 The examined foundation A with a neighboring foundation B 
 
 
The presence of neighboring loads will cause additional settlements si.D at nodal points of the 
existing foundation. The additional settlement si.D at the nodal point i is given by: 
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1
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where: 
ci, n+r Flexibility coefficient of the node i due to a unit load at node n+r [m/kN] 
Qn+r Contact force at node n+r [kN] 
r Node No. in the neighboring foundation B 
 
Due to neighboring foundation, the total settlement on the foundation A can be expressed in 
matrix form as: 
 

     Do sss       (3.2) 
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       DD QcQcs        (3.3) 
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where: 
{s} Vector of the total settlement of the examined foundation A 
{so} Vector of the settlement due to stress of the examined foundation A 
{sD} Vector of the additional settlement due to stress of neighboring foundation B 
{QD} Vector of contact forces for the examined foundation A 
[c] Flexibility matrix of the soil for the examined foundation A 
[cD] Flexibility matrix of the soil due to the neighboring foundation B 
{QD} Vector of contact forces due to the neighboring foundation B 
 
Through inversion of the matrix [c], the following equation will be given: 
 

       Dss skskQ         (3.4) 

 
or 
 

        DDss QckskQ          (3.5) 

 
Then, the system equation of the examined foundation A due to influence of neighboring 
foundation B in matrix form is: 
 

            DDssp QckPkk   δ       (3.6) 

 
where: 
[kp] Plate stiffness matrix of the examined foundation A 
[ks] Soil stiffness matrix for the examined foundation  A 
{δ} Vector of nodal displacements of the examined foundation A 
{P} Vector of applied loads on the examined foundation A 
 
 
3.3  Influence of buried structures 
 
Buried structures such as tunnels and culverts cause lowering of the ground. If a foundation 
exists above such structures, it will be affected by an additional settlement si.V at the node i due 
to vertical displacement through the influence of buried structures. 
 
Then, the total additional settlement si.A at the node i of the foundation due to external influences 
is: 
 

DiViAi sss ...        (3.7) 
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Example 3.1: Settlement outside the foundation 
 
1 Description of the problem 
 
Besides the possibility of studying the influence of neighboring structures on the foundation by 
the program ELPLA, the described algorithm of ELPLA can be used also for the calculation of 
settlements outside the foundation. This can be carried out through one of the following two 
ways:  
 
i) Using a net for the foundation and the unloaded areas outside the foundation. Then, the 

rigidity of the unloaded areas can be eliminated by assuming very small thickness. 
 
ii) Using two independently nets one for the foundation and the other for the unloaded areas 

outside the foundation as considered in this example. 
 
Figure (3.2) shows an irregular raft has the contact area (I) with opening inside it. It is required 
to determine the settlements at the area (II) around the raft and at the opening of area (III). 
 
2 Soil properties 
 
The raft of contact area (I) and the outside areas (II) and (III) are on regular subsoil. The soil is 
supposed to have the following parameters: 
 
Modulus of compressibility Es = 9500 [kN/m2] 
Poisson’s ratio   νs = 0.0 [-] 
 
The displacement of the soil is considered only in the vertical direction. Therefore, Poisson’s 
ratio for the soil is assumed zero. 
 
3 Raft material and thickness 
 
The raft material and thickness are supposed to have the following parameters:  
 
Young’s modulus   Eb = 2 × 107  [kN/m2] 
Poisson’s ratio  νb = 0.25  [-] 
Unit weight   γb = 0   [kN/m3] 
Raft thickness  d  = 0.7  [m].  
 
Unit weight of the raft material is assumed zero to neglect its own weight in the analysis. 
 
4 Loads 
 
The raft carries 12 concentrated loads as shown in Figure (3.2). 
 
5 Mathematical model 
 
The influence of surrounding structures and external loads can be taken into consideration only 
for the Continuum model (methods 4, 5, 6, 7 and 8). The Continuum model based on, the 
settlement at any node is affected by the contact forces at all the other nodes. In this example, 
the Isotropic elastic half-space soil medium (method 5) is chosen to analysis the raft (I) and 
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outside areas (II) and (III). 
 
6 Analysis 
 
To carry out the analysis, the raft (I) and the outside areas (II) and (III) are subdivided into two 
independent element nets as shown in Figure 3.2b. Two independent names define the data of 
the raft and the outside areas are chosen. The origin coordinates of the raft are (xo, yo) = (8.0, 
8.0), while for the outside areas are (0.0, 0.0). 
 
The analysis of the raft (I) is carried out to obtain the contact pressures under it first. Due to 
these contact pressures, settlements will occur not only under the raft (I) but also outside under 
areas (II) and (III). Then, the settlements of the outside areas (II) and (III) are determined. 
 
7 Results 
 
Figure 3.3 shows the contact pressures under the raft (I) that cause the settlements under it and 
also at the outside areas (II) and (III). Figure 3.4 shows the contour lines of the settlements under 
the raft. 
 
Figure 3.5a shows the settlement at the middle section s-s of the outside areas (II) and (III), 
while Figure 3.5b shows the contour lines of the settlements. As it is expected, the greatest 
values of settlements are near the raft. 
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Figure 3.2 a) Section s-s through the raft 

b) Raft (area I) with loads [kN] and neighboring areas II and III 
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Figure 3.3 Contact pressures [kN/m2] under the raft 
 
 

 
 
Figure 3.4 Contour lines of settlements [cm] under the raft 
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Figure 3.5 a) Settlements of neighboring areas II and III at section s-s 
          b) Contour lines of settlements [cm] of neighboring areas II and III 
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Example 3.2: Influence of a new neighboring building II on an old one I 
 
1 Description of the problem 
 
For the explanation of the influence of a neighboring building, the influence of a new building 
on an existing old one is examined in this example.  
 
Figure 3.6 shows plan and section of new building II beside similar old one I. The building I was 
constructed since long time, while the building II will be constructed close to the first one. The 
two buildings have the same construction geometry and loads. Also, every building is 
symmetrical about both x- and y-axes. 
 
2 Soil properties 
 
The subsoil under the buildings consists of a layer of stiff plastic clay with 5.70 [m] thick, 
overlying a rigid base (Figure 3.6a). The soil is supposed to have the following parameters: 
 
Modulus of compressibility for loading  Es = 5 000 [kN/m2] 
Modulus of compressibility for reloading  Ws = 15 000 [kN/m2] 
Unit weight      γs = 18   [kN/m3] 
Poisson’s ratio     s = 0.0  [-] 
 
The displacement of the soil is considered only in the vertical direction. Therefore, Poisson’s 
ratio for the clay is assumed zero. 
 
3 Foundation material and thickness 
 
The foundation material and thickness are supposed to have the following parameters: 
 
Young’s modulus   Eb  = 2 × 107 [kN/m2] 
Poisson’s ratio   b  = 0.25  [-] 
Unit weight   γb = 0.0  [kN/m3] 
Foundation thickness   d = 1.0  [m] 
Eigengewicht des Betons wird vernachlässigt 
 
Unit weight of the foundation material is assumed zero to neglect its own weight in the analysis. 
 
4 Mathematical model 
 
The influence of surrounding structures and external loads can be taken into consideration only 
for the Continuum model (methods 4 to 9). The Continuum model based on, the settlement at 
any node is affected by the forces at all the other nodes. In this example, the Modulus of 
compressibility method (method 7) is chosen to analysis both of the two buildings. 
  
5 Analysis 
 
To analysis the foundations, each foundation is subdivided into elements with 189 nodes as 
shown in Figure 3.6b. Two independent names define the data of the two buildings are chosen. 
The data are quite similar for the two buildings except the origin coordinates, which are chosen 
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to be (xo, yo) = (10.28, 0.0) and (0.0, 0.0) for buildings I and II, respectively. In spite of the two 
buildings are closed to each other, a small distance of 20 [cm] is assumed between them to avoid 
overlapping their nodes. 
 
The analysis of the new building II is carried out first to obtain the contact pressures under it.  
Due to these contact pressures, settlements will occur not only under the building II but also 
outside under the building I. Then, under the assumption that left beside the old building a new 
building will be constructed, the contact pressures, settlements and internal forces of the old 
building are determined. 
 
6 Results and evaluation 
 
Figure 3.7a shows the contact pressure distribution that was originally available under the old 
building. As it is expected, the contact pressures are distributed symmetrically, because the 
building was analyzed under the assumption that the loads are symmetrically applied. 
 
Figure 3.7b on the right shows the changes in contact pressures under the old building, while the 
opposite figure on the left shows the contact pressures under the new building. It is through 
comparison to recognize that considerable differences occur in the contact pressure distribution 
under the old building. The contact pressures became smaller at the edge between new building 
and old building due to the additional settlements from the influence of the neighboring 
building. From equilibrium of the vertical forces, the contact pressures became larger in the 
middle of the old building. Of course, the change in contact pressure distribution under the 
building will cause also changing and shifting the stress of the old building. Accordingly, the 
moments of the old building will be affected. 
 
Figure 3.8a shows the settlements as contour lines under the old building I without the influence 
of the neighboring building. Because there is a centrical resultant load, the settlements are 
symmetrical.  
 
Figure 3.8b on the right shows the settlements of the old building I and on the left the 
settlements of the new building II. As it is expected, the old building settled additionally at the 
edge to the new building. Consequently, the settlements are regressive on the right side of the 
old building. This means a tilt of the old building occurs. 
 
Figure 3.9 shows the settlements s, contact pressures q and moments mx at the middle of the 
foundations for both buildings I and II. 
  
From the results, it is recognized furthermore, that the settlements at the edge nodes of the old 
building near to the new building increase strongly (Figure 3.9a). Therefore, the settlement 
increased from 4.79 [cm] to 7.31 [cm] at the middle of the foundation. 
 
The influence of the neighboring building is very clearly noticeable in curves of the Figure 3.9c. 
Due to the greatest positive moment (column moment with load P = 2000 [kN]), which is 
increased from 787 [kNm/m] (only new building) to 654 [kNm/m], the sign of the field moment 
is changed. The field moment (only new building) reaches 20 [kNm/m], while with the influence 
of a neighboring building at the same node the field moment reaches -200 [kNm/m]. 
 
 
By these results can now estimate the addition stress on the old building due to the influence of 



Theory for the calculation of shallow foundations 
Chapter 3      Neighboring Foundations and Buried Structures 
 

 3 - 12 

the new building and consequently prevent damages of the old building. 
 

 
 
Figure 3.6 Action of new building II on the old building I 
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Figure 3.7 Contour lines of contact pressures [kN/m2] under the new and old buildings 
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Figure 3.8 Contour lines of settlements [cm] under the new and old buildings 
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Figure 3.9 Settlements, contact pressures and moments at the middle of the foundation 
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Example 3.3:  Influence of ground lowering on a building due to a tunnel 
 
1  Description of the problem 
 
Figure 3.10 shows a raft of a building consists of two rectangular parts, which are completely 
connected. The raft is 50 [cm] thick and has a foundation depth of 2.50 [m] under the ground 
surface. It is planned to construct a tunnel diagonally to the building axis. A primary estimation 
expects that the tunnel will cause a settlement trough of about 9 [m] width with a maximum 
lowering of 3 [cm] for the building ground. The settlement trough is plotted in Figure 3.10 as 
contour lines, running symmetrically to the tunnel axis. The influence of the settlement trough 
due to construction of the tunnel is considered in the analysis of the raft. The raft carries two 
equal column loads, each of P = 18000 [kN] and line loads of p = 300 [kN/m] from edge walls. 
The edge walls have 0.30 [m] breadth and 3 [m] height.  
 
2 Soil properties 
 
The subsoil under the raft is defined by 3 boring logs B1 to B3 up to 14 [m] under the ground 
surface. The subsoil consists of two soil layers of clay and sandstone, which are not horizontally 
stratified as shown in Figure 3.10 and Table 3.1. Poisson’s ratio for the soil is νs = 0.3 [-]. 
 
Tabelle 3.1  Bodenkennwerte 
 

Layer 
No. 

Type of 
soil 

Depth of 
layer 

underground 
surface 

z 
[m] 

Modulus of compressibility of the 
soil for 

Unit 
weight of 
the soil 
γs 

[kN/m3] 

Loading 
Es [kN/m2] 

Reloading 
Ws [kN/m2] 

 
1 
2 

 
Clay 

Sandstone 

 
5.5/ 6.3/ 7.0 

14 
10000 
160000 

30000 
400000 

 
18 
21 

 
3 Raft material and properties 

 
The raft material is reinforced concrete and has the following properties:  
 
Young’s modulus  Eb = 3 × 107  [kN/m2] 
Shear modulus  Gb = 1.25 × 107 [kN/m2] 
Poisson’s ratio  b = 0.2   [-] 
Unit weight   γb = 25   [kN/m3] 
 
The rigidity of the edge walls (0.30 [m] breadth and 3 [m] height) is simulated through beam 
elements along the raft edge with the following data:  
 
Moment of inertia  I  = 0.675  [m4] 
Torsional inertia  J  = 0.0253  [m4] 
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4 Analysis of the raft 
 

The raft is subdivided into 112 square finite elements. Each element has a side of 1.5 [m] as 
shown in Figure 3.10. The analysis of the raft is carried out by the modulus of compressibility 
method (method 7). To consider the irregularity of subsoil under the raft, the flexibility 
coefficients are determined through bilinear interpolation. To examine the influence of the 
tunnel on the raft, the analysis of the raft is carried out first without consideration of the tunnel. 
Then, with consideration of the estimated settlements due to presence of the tunnel. 
 
5 Results and discussion 

 
The results of the settlements, contact pressures and moments are presented in Figures 3.11 to 
3.13. It can be concluded from the figures that: 

 
˗ The contact pressure under the columns become higher, while that at the field between
 columns become smaller. 
 
˗ Due to the effect of the tunnel, the settlement under the raft at area above the tunnel will
 increase while the contact pressure will decrease. The change in the moment at this area
 is also remarkable. 

 
˗ Moment become higher under the column, while that in the fields between columns
 become smaller. However, overall the change in the moment in this example is not great. 
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Figure 3.10 a) Raft plan, settlement trough due to tunnel as contour lines and loads 

b) Boring logs B1 to B3 
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Figure 3.11 Settlements s [cm] without and with consideration of the tunneling 
  a) Contour lines 
  b) Section I-I 
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Figure 3.12 Contact pressures q [kN/m2] without and with consideration of the tunneling 
  a) Contour lines 
  b) Section I-I 
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Figure 3.13 Moments mx [kN.m/m] without and with consideration of the tunneling 
  a) Contour lines 
  b) Section I-I 
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In many practical cases, it becomes important to study the interaction of elastic or rigid 
foundations, which are constructed simultaneously. In this case, there will be interaction of 
foundations due to the overlapping of stresses through the soil medium, however the structures 
are not statically connected. The interaction of foundations will cause additional settlements 
under all foundations. 
 
The conventional solution of this problem assumes that the contact pressure of the foundation is 
known and distributed linearly on the bottom of it. Accordingly, the soil settlements due to the 
system of foundations can be easily determined. 
 
This assumption may be correct for small foundations, but for big foundations, it is preferred to 
analysis the foundation as a plate resting on either elastic springs (Winkler’s model) or 
continuum model. In spite of the simplicity of the first model in application, one cannot consider 
the effect of neighboring foundations or the influence of additional exterior loads. Thus, because 
Winkler’s model is based on the contact pressure at any point on the bottom of the foundation is 
proportional to the deflection at that point, independent of the deflections at the other points. 
Representation of soil as Continuum model (methodes 4, 5, 6, 7 and 8) enables one to consider 
the effect of external loads. 
 
The study of interaction between a foundation and another neighboring foundation or an external 
load has been considered by several authors. Stark (1990) presented an example for the 
interaction between two rafts. Kany (1972) presented an analysis of a system of rigid 
foundations. In addition, he presented a solution of system of foundations considering the 
rigidity of the superstructure using a direct method (Kany 1977). Recently, Kany/ El Gendy 
(1997) and (1999) presented an analysis of system of elastic or rigid foundations on irregular 
subsoil model using an iterative procedure. 
 
This section presents a general solution for the analysis of system of foundations, elastic or rigid, 
using the iterative procedure of Kany/ El Gendy (1997) and (1999). 
 
 
4.2  Definition of system of foundations 
 
To describe the analysis of system of slab foundations, consider the example system of slabs 
shown in Figure 4.1. The system consists of three different slabs I, II and III. It is supposed to be 
constructed separately simultaneously. The three slabs are divided into square elements having r 
= rI + rII + rIII nodes. The node numbering and loads are defined in the global system of 
coordinate x-y as shown in Figure 4.1. The contact pressure qi at a node i is replaced by 
equivalent contact force Qi. There are additional two external foundations IV and V constructed 
after the system of the three slabs is carried out. Those two external foundations will provide an 
additional settlement si.A at a node i. 
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Figure 4.1 Plan of a system from three slabs (I to III) and two external foundations IV and V 
 
 
4.3  Summation equation of settlement 
 
For the set of grid points of the three slabs, the settlement si at a point i is defined by series of 
unknown contact pressures Qk as shown in Equation 4.1. 
 

Ai

rk

k
kkii sQcs .

1
 , ) ( 





     (4.1) 

 
Where 
ci, k Flexibility coefficient of the node i due to a unit load at node k 
si.A  Additional settlement at that node due to external influences (foundations IV and V) 
 
 
4.4  Assembling the flexibility matrix 
 
The analysis of an isolated foundation on three-dimensional subsoil model, which were 
presented by Kany/ El Gendy (1995), may be used also here for the analysis of system of 
foundations. 
  
Assembling the total flexibility matrix for the system of slabs in Figure 4.1, which has total 
number of r = 145 nodes, requires to do r2  = 21025 settlement calculations through Equation 4.1 
(without external foundations IV and V). 
 
Equation 4.1 can be rewritten in matrix form as: 
 

Slab 

NI

rI

1

Slab II

x

y

Slab III

NIII

rII

rIIIExternal foundation 

External foundation IV

p

NII



Theory for the calculation of shallow foundations 
Chapter 4        System of many Foundations  
 

 4 - 4 

 
 
 

     
     
     

 
 
 

 
 
  


































































III

II

I

III

II

I

III III, II III, I III, 

III II, II II, I II, 

III I, II I, I I, 

III

II

I

 

A

A

A

s

s

s

Q

Q

Q

ccc

ccc

ccc

s

s

s

  (4.2) 

 
where 
{s}I Settlement vector of the slab I. 
[c]I, J Flexibility matrix of the slab I due to contact pressure of slab J. 
{Q}I Contact force vector of the slab I. 
{sA}I Additional settlement vector of the slab I due to external influences  
 (foundations IV and V). 
 
Inverting the total flexibility matrix gives the total soil stiffness matrix as: 
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4.5  Analysis of system of elastic foundations 
 
4.5.1  Assembling the system of linear equations 
 
For big foundations, the foundation is treated as a plate on elastic medium. From the finite 
element analysis of the plate, the equilibrium of foundation I is expressed by the following 
matrix equation: 
 

       IIII 
 δ QPk p       (4.4) 

 

 
In the same manner for foundation II: 
 

       IIIIIIII 
 δ QPk p       (4.5) 

 

 
and for foundation III: 
 

       IIIIIIIIIIII 
 δ QPk p       (4.6) 

 

 
where  
{p}I, {p}II und {p}III  External force vectors of slabs I, II and III 
{δ}I, {δ}II und {δ}III  Deformation vectors of slabs I, II and II 
[kp]I, [kp]II und [kp]III  Plate stiffness matrix of slabs I, II and III 
 
Equations 4.4, 4.5 and 4.6 are rewritten in matrix form as: 
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Substituting Equation 4.3 into Equation 4.7 gives the following linear system equations in 
matrix form as: 
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Considering the compatibility of deformations between the slab and the soil medium, where the 
soil settlement s is equal to the slab deflection w, Equation 4.8 becomes: 
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 (4.9) 

 
The above system of linear equations can be solved by Gauss elimination method or by iterative 
procedure according to Kany/ El Gendy (1997). 
 
 
4.6  Analysis of system of rigid foundations 
 
 4.6.1  Assembling the system of linear equations 
 
The settlement si of the slab I at a node i due to slab rigidity is expressed by the following linear 
relation (plane translation): 
 

.I.I.I θtan θtan xiyioi yxws      (4.10) 

 
where 
wo.I Rigid body translation of the slab I at the slab centroid 
θx.I  Rigid body rotation of the slab I about x-axis 
θy.I  Rigid body rotation of the slab I about y-axis 
 



Theory for the calculation of shallow foundations 
Chapter 4        System of many Foundations  
 

 4 - 6 

Equation 4.10 for the slab I can be rewritten in matrix form: 
 

     III Δ TXs       (4.11) 

 
where 
{Δ}I Vector of translation wo.I and rotations tan θy.I and tan θx.I of the slab I 
[X]T

I Vector of coordinate x and y of the slab I, [X]T
I = [1, x, y] 

 
In the same manner for foundation II: 
 

     IIIIII Δ TXs       (4.12) 

 
and for foundation III: 
 

     IIIIIIIII Δ TXs       (4.13) 

 
Equations 4.11, 4.12 and 4.13 are rewritten in matrix form: 
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   (4.14) 

 
 
4.6.1.1  Equilibrium of the vertical forces 
 
For each of the three slabs, the resultant Ni due to external vertical forces acting on the slabs 
must be equal to the sum of contact forces, where: 
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4.6.1.2  Equilibrium of the moments 
 
For each of the three slabs, the moment due to resultant Ni about the y-axis must be equal to the 
sum of moments due to contact pressure forces about that axis, where: 
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 (4.16) 

 
The equilibrium equations for moments about the x-axis are given by: 
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Equations 4.15, 4.16 and 4.17 are rewritten in matrix form as:  
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Substituting Equation 4.18 and 4.14 into Equation 4.3, gives the following linear system of 
equations in matrix form: 
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 (4.19) 

 
The above system of linear equations 4.19 can be solved by Gauss elimination method or by 
iterative procedure according to Kany/ El Gendy (1999). 
 
Through solving the system of linear equations 4.19, get wo.I, tan θx.I , tan θy.I, wo.II, tan θx.II , tan 
θy.II , wo.III, tan θx.III and tan θy.III. Substituting these values in Equation 4.14, then Substituting 
Equation 4.14 in 4.3, get the following matrix equation to find the n unknown contact pressure 
forces Q1 to Qr.  
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 (4.20) 

 
Substituting also the values wo, tan θx and tan θy  in Equation 4.14, one can get the n settlements 
s1 to sr. 
4.7  Iterative procedure 
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The major difficulty for practical problems to study a system of foundations lies in solving large 
set of equations, which requires large computer storage and long computation time. 
 
There are many iteration methods for the analysis of an isolated foundation in case of elastic 
foundation presented by Haung (1974), Ahrens/ Winselmann (1984), Stark (1990) and El Gendy 
(1994). Those methods may be used here. 
 
In the program ELPLA, an iteration method is developed to solve the system of linear equations 
for system of both elastic and rigid foundations.  
 
The main idea of this method is that each foundation set of equations is solved alone and the soil 
stiffness matrix will be converted to equivalent symmetrical banded matrix in case of elastic 
foundations. This matrix is then simply added to that of the plate. As the plate stiffness matrix is 
also a banded matrix, the overall matrix can be solved by using the banded coefficients 
technique. 
 
A good advantage of this iteration method is that it requires much less computer memory than 
the elimination method or iteration methods, which treat the total system equations of the 
foundations as one unit.  
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Figure 4.2 shows the iteration cycle and the flow chart of the iteration process. 
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Example 4.1:  Interaction of two circular rafts 
 
1  Description of the problem          
 
To illustrate the application of the iterative procedure of Kany/ El Gendy (1997) for the 
interactive system of foundations, consider the system of two equal large circular rafts shown in 
Figure 4.3. The rafts rest on a soil layer of thickness 15 m. Each raft has a diameter of 22 [m] 
and 0.65 [m] thickness. Loading on each raft consists of 24 column loads in which 16 columns 
loads have P1 = 1250 [kN] and 8 column loads have P2 = 1000 [kN]. The Young’s modulus of 
the raft material is Eb = 2.6×107 [kN/m2] and Poisson’s ratio is νb = 0.15 [-], while the soil 
values are Es = 9500 [kN/m2] and νs = 0.0 [-]. 
 

 
 
Figure 4.3 System of two circular rafts 
 
 
2  Analysis 
 
The analysis of the two rafts is carried out for two cases:  
 
i) without interaction between rafts. 

 
ii) with interaction where the two rafts are constructed simultaneously. 
  
Each raft is divided into 404 elements yielding 914 and 457 nodal points, for the calculations 
based on system of two rafts and the isolated raft, respectively. This generates 2742 and 1371 
simultaneous equations for the two calculation cases, respectively.  
 
To analysis the rafts as system of foundations, Data of the two rafts are put in two separate files 
(Files ha1 and ha2). Besides, A third file contains information about the system of foundations 
(File h12). Data of the two rafts are quite similar except the origin coordinates, which are chosen 
(xo, yo) = (0.0, 0.0) and (22.5, 0.0) for rafts (I) and (II) respectively. 
 
 
The maximum difference between the soil settlement s [cm] and the raft deflection w [cm] is 

Raft IIRaft I

P1 =1250 [kN]
P2 =1000 [kN]

a aPP

P2 P2

y

x
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considered as an accuracy number. In this example, the accuracy is chosen 0.01 cm. The results 
are obtained by using the iterative procedure of Kany/ El Gendy (1997) after only four cycles for 
both cases with and without interaction (only isolated raft).  
 
To show the speed of convergence of the iterative procedure of Kany/ El Gendy (1997), a 
comparison of it with modification of subgrade reaction by iteration method (Ahrens/ 
Winselmann (1984)) and that of El Gendy (1994) is carried out. The accuracy of computation is 
plotted against the iterative cycle number in Figure 4.4, for the three iteration methods where the 
analysis is carried out for an isolated raft. Figure 4.4 shows that the iterative procedure of Kany/ 
El Gendy (1997) converges more rapidly. 
 

 
 
Figure 4.4 The accuracy against the iterative cycle number for the three iteration methods 
 
 
3 Results and evaluation 
 
Figure 4.5 on the left shows the contour lines of settlements under the raft (I) without interaction 
of two rafts. As it is expected, the settlements are distributed symmetrically, because the raft was 
analyzed under the assumption that the loads are symmetrically applied. Figure 4.5 on the right 
shows the contour lines of settlements under the raft (II) considering the interaction of two rafts. 
It is recognized through comparison that considerable differences occurred in settlements under 
the raft (II). The settlements of the raft (II) became greater at the edge between two rafts. 
 
Figure 4.6 shows the settlements s, contact pressures q and moments mx at the middle of the raft 
(II) for both two cases with and without interaction. 
 
 
From the results, it is recognized furthermore, that the settlements of the edge nodes of the raft 
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(II) near the raft (I) increase strongly (Figure 4.6a). Therefore, the settlement increased from 
5.12 [cm] to 7.75 [cm] at the middle of the raft. 
 
Figure (4.6b) shows that the contact pressure at the edge of the raft (II) near the raft (I) 
decreased from 70 [kN/m2] to 240 [kN/m2]. The contact pressures became smaller at the edge 
between two rafts due to the additional settlements from the interaction of them. From 
equilibrium of the vertical forces, the contact pressures became larger at the middle of the raft. 
Naturally, the change in contact pressure distribution under the raft will cause also changing and 
shifting in the stress of the raft. Accordingly, the moments of the raft will be affected. 
 
The interaction of the two rafts is clearly noticeable in moments mx (Figure 4.6c). The field 
moment mx near the raft (I) decreased from 87 [kN.m/m] to 7 [kN.m/m] while the field moment 
at the center of the raft decreased from 437 [kN.m/m] to 370 [kN.m/m]. 
 

 
 
Figure 4.5 Contour lines of settlements s [cm] under the raft (I)     

without interaction and under the raft (II) without interaction of two rafts 
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7.5

5.

7.

8.0

6.

6.5

6.
6.
7.

7.

8.



Theory for the calculation of shallow foundations 
Chapter 4        System of many Foundations  
 

 4 - 13 

 
Figure 4.6 Settlements, contact pressures and moments at the middle of the raft (II) 
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Example 4.2:  Settlement behavior of four containers 
 
1  Description of the problem 
 
To verify the iterative procedure of Kany/ El Gendy (1997) and evaluate its accuracy for 
interactive large system of rigid rafts, consider the example 2 in the User’s Guide of program 
STAPLA (Kany (1976)). The computed settlements obtained from the iterative procedure are 
compared with those of program STAPLA (Kany (1976)). 
 
For a sewerage station, two isolated containers A and B were constructed simultaneously. Then, 
lately to extend the station another two isolated containers C and D would be constructed at the 
same area. Those two external C and D containers would provide an additional settlement on 
containers A and B.  
 
It is required to assess the tilting of each container and the settlement considering the interaction 
between the containers through the subsoil at the end of construction. The tilting and settlement 
of the containers are main factors for designing of the pipe connections.  
 

  
Figure 4.7 a) Location of containers to each other  

b) Soil properties under the containers  (STAPLA(Kany (1976))) 
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Figure 4.8 Division of the four circular rafts together into 26 fields (STAPLA) 
 

  
Figure 4.9 Division of the four circular rafts together into 1828 nodes (ELPLA) 
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2 Analysis 
 
Due to the big rigidity of the concrete containers, the containers may be treated as full rigid 
bodies. Therefore, the foundations are assumed rigid circular rafts. To assess the tilting of the 
circular rafts by the Program STAPLA (Kany (1976)), the circular rafts were subdivided into a 
coarse mesh of rectangular fields. The total number of the fields of the four circular rafts was 26 
fields as shown in Figure 4.8. The analysis was carried out to represent the final stage of 
construction (four containers). To reduce the computation time by the program STAPLA (Kany 
(1976)), the advantage of symmetry of the system of rafts about the y-y axis was considered in 
the analysis. In addition, equivalent square rafts were chosen instead of the two external circular 
rafts that would be constructed lately (containers C and D in Figure 4.7). 
By the iterative procedure of Kany/ El Gendy (1999), dividing the same system of rafts into 
many elements is possible. In the example, the circular rafts were subdivided into a finer mesh 
of rectangular elements. The total number of nodes was 1828 nodes for the four rafts as shown 
in Figure 4.9. 
 
3 Results and evaluation 
 
To evaluate the iterative procedure, the results of settlements at five selected points as shown in 
Figure 4.7 were compared in Table 4.1 with those obtained from the program STAPLA (Kany 
(1976)). The results were considered for the final stage of construction (four containers). 
It can be noticed from the comparison that there is relative difference between the results 
obtained by the iterative procedure and those obtained by the program STAPLA (Kany (1976)) 
for the five selected points. Through this comparison, it can be recognized that, the settlements 
at a coarse fine subdivision of the raft exceed those at a fine subdivision of the raft by 4.1% to 
6.4%. On the other hand, subdividing the circular raft into many square elements could bitterly 
represent its dimension. The analysis of system of rigid rafts shown in Figure 4.7 was carried out 
by a personal computer (300 MHZ, 4.5 Gb capacity, Win 95). The iteration process needed 
fewer than 2 Min. at accuracy 0.0012 cm after three cycles. 
 
Table 4.1 Comparison between settlements s [cm] obtained by STAPLA (Kany (1976)) and 

that by ELPLA 
 

Point 
Settlement s [cm] 

Relative difference [%] 

STAPLA New calculation 

 
1 
2 
3 
4 
5 

 
14.51 
14.91 
15.31 
14.44 
15.38 

13.74 
14.17 
14.61 
13.57 
14.78 

5.6 
5.2 
4.8 
6.4 
4.1 

 



Theory for the calculation of shallow foundations 
Chapter 4        System of many Foundations  
 

 4 - 17 

Example 4.3:  Interaction of two rafts considering two additional footings 
 
1  Description of the problem 
 
Besides, the possibility of analysis of large foundation system with many elements by the 
procedure of Kany/ El Gendy (1997), the mesh of the rigid foundation can be generated in 
analog mode to the finite element mesh of the elastic foundation in one program. Comparing 
results from analysis of system of rigid rafts with those of elastic or flexible rafts with the same 
input data is possible. Subsequently the results of the three analyses are compared in an 
example. 
 
In this example, the settlements of structures due to interactive analysis of system of rigid, 
elastic and flexible rafts are studied. This example is chosen from the reference Graßhoff/ Kany 
(1997). System of two large rafts and additional two external footings are constructed near each 
other. The dimensions are shown in Figures 4.10 to 1.12 and Table 4.3. 
 
2  Soil properties  
 
The soil has two layers with different materials as shown in Figure 4.10 and Table 4.2. Poisson’s 
ratio is constant for both of the two soil layers and is taken νs = 0. The foundation level for the 
system of rafts is 1.3 [m]. 
 
Table 4.2 Soil properties 
 

Layer 
No. 

Type of 
soil 

Depth of 
layer 

underground 
surface 

z 
[m] 

Modulus of elasticity of the soil 
for 

Unit weight 
of the soil 
under GW 

γs 
[kN/m3] 

Loading 
Es [kN/m2] 

Reloading 
Ws [kN/m2] 

1 
2 

Silt 
Sand 

4.7 
15 

9000 
100000 

27000 
300000 

20 
- 

 
3  Raft material and thickness 
 
The raft material (concrete) and thickness were supposed to have the following properties: 
 
Young’s modulus Eb = 2 × 107 [kN/m2] 
Poisson’s ratio  b = 0.25  [-] 
Raft thickness  d = 0.5  [m] 
Unit weight  γb = 0.0  [kN/m3]  
 
The Young’s modulus Eb, Poisson’s ratio b and thickness of rafts d play for the analysis of 
system of rigid rafts no role. The self weight of the raft is ignored. Therefore, unit weight of raft 
material is chosen γb = 0.0 to neglect the own weight of the raft. 
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Figure 4.10 Section 1-5 with layer profile, soil properties and node numbers 
  of superstructure Graßhoff/ Kany (1997) 
 
 
Table 4.3 Dimensions of the rafts I and II and the footings III and IV 
 

Foundation 
Length 

A 
[m] 

width 
B 

[m] 

Origin coordinates 

x [m] y [m] 

Raft I 
Raft II 

Footing  III  
Footing IV 

15 
8 
2 
4 

8 
12 
2 
3 

-1.5 
9.0 
21.0 
17.0 

-0.5 
7.6 
11.0 
1.5 
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Figure 4.11 Plan view for system of rafts I and II as well as the footings 
  III and IV. Subdivision of the rafts: 43 fields (Graßhoff/ Kany (1997)) 
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Figure 4.12 Plan view for loads [kN] on the rafts I and II as well as 
  the footings III and IV. Subdivision of the rafts: 489 nodes 
  (Calculation by ELPLA) 
 
 
4 Analysis 
 
For the space structure system shown in Figure 4.11, the settlements at all nodes on the rafts are 
determined. The analysis of the two rafts I and II with external footings III and IV was carried 
out at three different rigidities: 
 
1. System of flexible rafts 
2. System of elastic rafts  
3. System of rigid rafts 
 
With the same input data, the three analyses carried out to allow a comparison. To represent the 
flexible foundations, the raft thickness is chosen d = 20 cm, while for elastic foundations the raft 
thickness is 50 cm. For rigid foundations, defining the raft properties is not necessary because 
the analysis treats the rafts as rigid bodies. 
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5 Results and evaluation 
 
Figures 4.13 to 4.15 show the settlements for the system of flexible, elastic, rigid rafts, while 
Figure 4.16 shows in one diagram, to good comparison, the settlements of the three analyses at 
section A-B. Through the comparison between the results of the analysis obtained by the 
program ELPLA and those obtained by Graßhoff/ Kany (1997), it can be recognized that the 
deformation and contact pressure considering superstructure rigidity are nearly similar to those 
obtained by the analysis of rigid rafts. 
 
From Tables 4.4 and 4.5 it can be seen that the superstructure rigidity has great influence on the 
rafts. 
 
The analysis of the system of rafts without interaction of foundations gives symmetrical 
deformation for all rafts at three different rigidities, because the loads are applied symmetrical 
on each raft. 
  
It can be recognized from the results that the settlements at the edge of structure I close to the 
neighboring structure II increase strongly. Therefore, the settlement of field 25 increases from 
3.25 [cm] to 3.39 [cm] in case 1 (flexible raft), from 2.59 [cm] to 2.77 [cm] in case 2 (elastic 
raft) and from 2.46 [cm] to 2.65 [cm] in case 3 (rigid raft). This means that design of the rafts 
must consider the effect of neighboring foundations. 
 

 
 
Figure 4.13 Contour lines of settlements s [cm] by analyzing as system of flexible rafts 
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Figure 4.14 Contour lines of settlements s [cm] by analyzing as system of elastic rafts 
 

 
 
Figure 4.15 Contour lines of settlements s [cm] by analyzing as system of rigid rafts 
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Figure 4.16 Settlements s [cm] at section A-B under the raft I (with neighboring influence of 

the building II and the two footings III and IV) 
 
 
Table 4.4  Comparison between the analysis by Graßhoff/ Kany (1997) and 

ELPLA for settlements s [cm] under the raft I (without neighboring influence) 
 

Type of analysis 
Graßhoff/ Kany (1997) New analysis 

Point 21 Point 25 Point 21 Point 25 
 

system of flexible rafts 
system of elastic rafts 
system of rigid rafts 

 
3.65 
3.04 

  2.78* 

3.65 
3.04 

  2.78* 

3.25 
2.59 
2.46 

 
3.25 
2.59 
2.46 

* Calculated as elastic raft with the superstructure 
 
Table 4.5  Comparison between the analysis by Graßhoff/ Kany (1997) and  

ELPLA for settlements s [cm] under the raft I (with neighboring influence of the 
building II and the two footing III and IV) 

 

Type of analysis 
Graßhoff/ Kany (1997) New analysis 

Point 21 Point 25 Point 21 Point 25 
 

system of flexible rafts 
system of elastic rafts 
system of rigid rafts 

 
3.66 
3.03 

  2.79* 

4.00 
3.51 

  3.16* 

3.27 
2.62 
2.50 

 
3.39 
2.77 
2.65 

* Calculated as elastic raft with the superstructure
 
Figure 4.13 shows that the analysis of flexible rafts leads to concentration of settlements on the 
nodes close to the applied loads. In the other extreme analysis case of rigid rafts, Figure 4.15 
shows a linear shape of contour lines for settlements due to the neighboring influence.  
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The neighboring influence for the analysis of elastic rafts is also obvious in Figure 4.14. It can 
be concluded also from Figures 4.13 to 4.15 that although all rafts are supposed to symmetrical 
loading, the settlements are unsymmetrical. Unsymmetrical results are expected also for contact 
pressures and internal forces due to the neighboring influence. 
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Example 4.4  Interaction of two square rafts constructed side by side 
 
1  Description of the problem 
 
Settlement joints are usually used in the foundation when the intensity of loads on it differs 
considerably from area to another. In such case, the foundation may be divided corresponding to 
its load intensity to avoid cracks. Settlement joint is constructed by making a complete separated 
joint in the foundation or a hinged joint. If the foundation has a separated joint, each part will 
settle independently but it will be interaction between parts of the foundation through the 
subsoil. In the other case of hinged joint, there will be transmission of shearing forces between 
connection parts. 
 
This example is carried out to examine the interaction of two rafts considering settlement joint. 
Consider two equal square rafts I and II will be constructed side by side. Each raft has a side of 
12 [m] and 0.5 [m] thickness. Raft I is subject to a uniform load of 400 [kN/m2], while raft II 
carries a uniform load of 200 [kN/m2]. 
 
2  Soil properties 
 
The rafts rest on a soil layer of thickness 10 [m], overlying a rigid base. The soil has the following 
parameters: 
 
Modulus of compressibility for loading Es = 10 000 [kN/m2] 
Modulus of compressibility for reloading Ws = 30 000 [kN/m2] 
Unit weight                          γs = 18  [kN/m3] 
Poisson’s ratio                          s = 0.3 [-] 
 
3  Raft material 
 
The raft material has the following parameters: 
 
Young’s modulus Eb = 2 × 107 [kN/m2] 
Unit weight          γb = 25  [kN/m3] 
Poisson’s ratio  b = 0.25 [-] 
 
Four cases concerning the influence of neighboring structures are considered as follows: 
 
Case 1:  Rafts I and II are constructed side by side at the same time. This case is examined 

for different distances c between the two rafts (Figure 4.17), where c = 0.0 [m], 
0.01 [m], 0.1 [m], 1.0 [m] and 10 [m]. 

 
Case 2:  Raft I is constructed at first, then later the raft II. This case is examined for 

different distances c between the two rafts (Figure 4.17), where c = 0.0 [m], 0.01 
[cm], 0.1 [m], 1.0 [m] and 10 [m]. 

  
Case 3:  Rather than rafts I and II, only one raft is constructed (Figure 4.18). 
 
Case 4:  Rafts I and II are connected by a hinged joint (Figure 4.19). 
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4  Analysis 
 
The rafts are subdivided into square finite elements, each element has a side of 1.5 [m] as shown 
in Figures 4.17 to 4.19.  
 
The analysis of rafts in case 1 can be carried out through one of the following two ways:  
 

i) Iteration by using two independently nets one for the raft I and the other for the
 second raft II. 

 
ii) Without iteration by using a net for the two rafts. The free distances between the
 rafts are carried out by inserting appropriate two elements between rafts. Then,
 the boundary nodes of these elements are eliminated as considered in this
 example. 

 
To carry out the analysis of rafts in case 2, two independent file names define the data of the two 
rafts are chosen. The data are quite similar for the two rafts except the loads and the origin 
coordinates. The origin coordinates are chosen (xo, yo) = (0.0, 0.0) for raft I and (xo, yo) = 
(12.0+c, 0.0) for raft II. Raft II is analyzed first to obtain the contact pressures, then raft I to 
consider the influence of neighboring raft II. 
 
To simulate a hinged joint between rafts in case 4 two very small elements are inserted between 
the rafts. Each element has 1 [cm] width and 5 [cm] thickness. The very small widths of the 
elements keep the distance between the rafts nearly zero, while the small thickness of the 
elements makes the raft rigidity at the joint very small. These boundary conditions allow 
interacting only the vertical forces between rafts. Moments at hinged connection will be 
eliminated due to the very small rigidity of connection elements. 
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Figure 4.17 Rafts I and II are constructed side by side (cases 1 and 2) 
 
 

 
 
Figure 4.18  Rather than rafts I and II, only one raft is constructed (case 3) 
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Figure 4.19 Rafts I and II are connected by a hinged joint (case 4) 
 
 
5  Results and discussion 
 
Figures 4.20 to 4.31 show the distribution of settlement, contact pressure, moment and shearing 
force at middle section a-a for the four cases of analyses. Tables 4.6 and 4.7 show the joint width 
c between the two rafts, settlements (s1, s2), contact pressures (q1, q2) at edges of the rafts (points 
1 and 2) and the differences (Δs, Δq) for cases 1 and 2. 
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Table 4.6 Settlements s1 and s2 at edges of rafts I and II and differences Δs 
 

Joint width 
c 

[m] 

Rafts I and II are constructed side 
by side at the same time (case 1) 

Raft I is constructed at first, then 
later the raft II (case 2) 

s1 
[cm] 

s2 
[cm] 

Δs=s1-s2 
[cm] 

s1 
[cm] 

s2 
[cm] 

Δs=s1-s2 
[cm] 

 
0.00 

 
15.05 

 
14.71 0.34 17.87 6.35 

 
11.52 

 
0.01 

 
15.12 

 
14.54 0.58 17.08 6.35 

 
10.73 

 
0.10 

 
15.30 

 
13.70 1.60 17.24 6.35 

 
10.89 

 
1.00 

 
14.73 

 
10.29 4.44 15.29 6.35 

 
8.94 

 
10.0 

 
13.00 

 
6.16 6.84 12.99 6.35 

 
6.64 

 
∞ 

 
13.10 

 
6.35 6.75 13.10 6.35 

 
6.75 

 
Table 4.7  Contact pressures q1 and q2 at edges of rafts I and II and differences Δq 
 

 
Joint width 

c 
[m] 

Rafts I and II are constructed side 
by side at the same time (case 1) 

Raft I is constructed at first, then 
later the raft II (case 2) 

q1 
[kN/m2] 

q2 
[kN/m2] 

Δq=q1-q2 
[kN/m2] 

q1 
[kN/m2] 

q2 
[kN/m2] 

Δq=q1-q2 
[kN/m2] 

 
0.00 

 
669 

 
-133 802 444 368 

 
76 

 
0.01 

 
664 

 
-119 783 529 368 

 
161 

 
0.10 

 
644 

 
-53 697 495 368 

 
127 

 
1.00 

 
653 

 
160 493 616 368 

 
248 

 
10.0 

 
733 

 
367 366 733 368 

 
365 

 
∞ 

 
733 

 
365 368 733 368 

 
365 

 
In general, it can be noticed from those figures that: 
 
Timeout of the construction process: 
 
˗ Considerable differences will be expected in the results, if the analysis is carried out for

 system of rafts (case 1) or for construction of new raft II beside an existing old one I 
(case 2). 

 
˗ If the two rafts are constructed side by side at the same time, both rafts will lean toward

 each other (Figure 4.21). 
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˗ If the raft I is constructed first and then the raft II, there will be an additional pressure
 under the raft I will cause an inclination of the raft I in the direction of the raft II (Figure
 4.25). 

 
Settlement differences at the joint: 
 
˗ For system of rafts (case 1), the settlement difference between rafts is relatively small at

 the joint for joint width c = 0.0 [cm]. The more settlement difference is for farther
 distance between rafts. In contrast, for the raft I with neighboring raft II (case 2) because
 of the pressure overlap from the neighboring raft II, the greater settlement difference is
 for the smaller joint width c (Figures 4.21, 4.25 and Table 4.6). This phenomenon occurs
 because the behavior of contact pressures of raft II has great influence on the
 settlement distribution of the raft I. Figures 4.20 and 4.24 show the contact pressure
 distribution for cases 1 and 2. The contact pressure of raft II for case 1 decrease by
 decreasing the width joint c, while for case 2 is independence from joint width c. 

 
˗ Settlements at the edge of the raft I due to influence of neighboring raft II (case 2) are

 greater than those due to system of rafts (case 1). 
 
˗ Settlements from case 1 for joint width c = 0.0 [cm] and from cases 3 and 4 are quite

 similar (Figures 4.21 and 4.29). 
 
˗ If hinged joint between rafts is used (case 4), there will be continuation of settlement

 under the rafts (Figure 4.29). 
 
Contact pressures: 
 
˗ For system of rafts (case 1) the contact pressure distribution under the raft I is almost

 independent of the joint width due to the heavy load of the raft I. On the other hand, for
 the raft II strong dependence on the joint width is to be found because the strong edge
 contact pressure of the raft I, which affects on the raft II (Figure 4.23 and Table 4.7). 

 
˗ Contact pressures at the edge of the raft I, if the raft I is constructed first and then the raft

 II (case 2), decreases by decreasing the width joint c (Figure 4.25). 
 

˗ Contact pressures from case 3 (rafts as one unit) and 4 (rafts with hinged joint) are nearly
 similar (Figure 4.28). 

 
Moments: 
 
˗ For system of rafts (case 1) the maximum moments for the raft I decrease by decreasing

 the joint width c, while for the raft II the sign of moment is changed from positive to
 negative in some places. The greater negative moment for raft II is for the smaller joint
 width c (Figure 4.22).  

 
˗ For case 2, if the raft I is constructed first and then the raft II, the maximum moments of

 raft I decrease by decreasing the joint width c. The positions of maximum moments are
 also shifted to the opposite direction of raft II (Figure 4.26).  

 
˗ It is clear from Figure 4.30 for rafts connected with hinged joint (case 4) that, the
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 moment at the hinged joint for the two rafts is zero. Figure 4.30 shows for case 3 that a
 positive moment is to be found at the connection position. Raft II for both cases 3 and 4
 has a negative moment beside a positive moment. 

 
Shearing forces: 
 
˗ The change in shearing forces for the raft I in case 1 is less than that in case 2 (Figures

 4.23 and 4.27), while for the raft II in case 1 the singe of shearing force is changed from
 negative to positive at the edge of the raft. The greater positive shearing force for raft II 
is for the smaller joint width c (Figure 4.23). 

 
˗ For both cases 3 and 4 a positive shearing force at the connection is to be found (Figure

 4.31). Maximum shearing force is for hinged connection. 
 

 
Figure 4.20 Contact pressures q at the middle section of rafts I and II when they are 

constructed at the same time 
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Figure 4.21 Settlements s at the middle section of rafts I and II when they are constructed at 

the same time  
 

 
 
Figure 4.22  Moment mx at the middle section of rafts I and II when they are constructed at the
  same time 
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Figure 4.23  Shear forces Qx at the middle section of rafts I and II when they are constructed at 

the same time 
 

 
 
Figure 4.24  Contact pressures q at the middle section of rafts I and II when raft I is 

constructed at first, then later raft II 
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Figure 4.25  Settlements s at the middle section of rafts I and II when raft I is constructed at 

first, then later raft II 
 
 

 
 
Figure 4.26  Moment mx at the middle section of rafts I and II when raft I is constructed at 

first, then later raft II 
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Figure 4.27  Shear forces Qx at the middle section of rafts I and II when raft I is constructed at 

first, then later raft II 
 
 

 
 
Figure 4.28  Contact pressures q at the middle section of the rafts I and II (case 3 and 4) 
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Figure 4.29  Settlements s at the middle section of the rafts I and II  (case 3 and 4) 
 
 

 
 
Figure 4.30  Moments mx at the middle section of the rafts I and II  (case 3 and 4) 
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Figure 4.31  Shear forces Qx at the middle section of the rafts I and II  (case 3 and 4) 
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Example 4.5 Analysis of a swimming pool 
 
1 Description of the problem 
 
A swimming pool is supposed to be constructed at a river. The existing ground around the pool 
has to be increased up to a meter. The pool has dimensions of 25 [m] × 10 [m] and maximum 
water depth of 1.20 [m] as shown in Figure 4.32. The foundation level is 1.45 [m] under the 
ground surface. Slab and walls are reinforced concrete of concrete grade B 25 with thickness of 
25 [cm] for slab and 20 [cm] for walls. It is divided into two independent parts through a joint at 
the pool middle. 
 
The filling material around the pool is non-cohesive soil (Figures 4.33 and 4.34). The filling is 
supposed to be carried out after finishing the pool. 
 
In this example, it is required to study the following: 
 
i)  Influence of the joint on the settlements, contact pressures and internal forces of the pool
 slab and the pool walls in case of the pool is completely filled by water. 
 
ii)  Influence of the ground rising by additional filling soil material at the southern part of 
the pool on the settlement. 
 
2  Soil properties 
 
The subsoil under the swimming pool is defined by five boring logs B1 to B5 up to 15 [m] under 
the ground surface. The subsoil consists of four soil layers of fill, silt with organic admixture, 
silt clayey and gravel, which are not horizontally stratified as shown in Figure 4.33 and Table 
4.8. Poisson's ratio for the soil is νs = 0.3 [-]. Ground water level is 3.80 [m] under the ground 
surface. 
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Figure 4.32 Details of the swimming pool  
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Figure 4.33 Boring logs B1 to B5 with soil properties 
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Table 4.8 Soil properties 
 

Layer 
No. 

Type of 
soil 

Modulus of 
compressibility of the 

soil for 

Unit weight of the 
soil 

Loading  
Es 

Reloading 
Ws 

above 
GW 
γs 

under 
GW 
 γ`s 

 
1 
2 
3 
4 

 
Fill  
Silt, organic admixture 
Silt, clayey, soft 
Gravel 

70000 
4000 
450 

100000 

150000 
10000 
1000 

200000 

19 
17.5 
16 
20 

 
10 
7.5 
6 
11 

 
3 Raft material and properties 
           
The material of the raft and walls is reinforced concrete of grade B 25. It has the following 
properties: 
           
Young’s modulus Eb = 3 × 107 [kN/m2] 
Shear modulus Gb = 1.3 × 107 [kN/m2] 
Unit weight   γb = 25  [kN/m3] 
Poisson’s ratio b = 0.25  [-] 
 
4 Stiffness of edge walls 
 
The rigidity of the edge walls (thickness B = 0.2 [m], height H = 1.2 [m]) is simulated through 
beam elements along the raft edge with the following data: 
 

Moment of inertia I =
12

3H
B

 
    = 0288.0

12

2.1
2.0

3

   [m4] 

Torsional inertia J =
















 

4

4
3

12
1 21.0

3

1

H

B

H

B
BH

 

    =
















 

4

4
3

2.112

2.0
1 

2.1

2.0
21.0

3

1
2.02.1  

    = 0.0286  [m4] 
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5 Determination of settlements, contact pressures and internal forces 
 
5.1  Studying the influence of the joint 
 
Four cases concerning the influence of the joint are considered as follows:  
 
Case 1: Analysis without interaction (Figure 4.34) 
 The two rafts are constructed side by side separately without interaction between them 

through the soil. 
 
Case 2: Analysis with interaction but without shearing forces (Figures 4.34). 
 The two rafts are constructed side by side separately with interaction only through the 

soil. The distances c between the two rafts is c=0.0 [m]. 
 
Case 3: Analysis with interaction and with shearing forces (Figure 4.36). 
 The two rafts are connected through hinged joint. The hinged joint is represented by 

elements of 1 [cm] wide and 2 [cm] thickness. 
 
Case 4: Analysis without joint (Figure 4.35) 
 Rather than two rafts, one raft is constructed. 
 
5.2 Studying the influence of surrounding loading 
 
To study the influence of the surrounding loading on the swimming pool due to the filling soil 
material, the weight of the filling is represented by four loaded areas according to its weight 
intensity as shown in Figure 4.38 and Table 4.9. The loaded areas are subdivided into four 
independent nets. The analysis of these loaded areas is carried out firstly to obtain the contact 
pressures under them. Due to these computed contact pressures, the settlement will occur under 
the swimming pool. To simulate flexible foundations, the thicknesses of external foundations 
(loaded areas) are chosen to be very small (5 [cm]). 
 
Table 4.9 Properties of the loaded area 
 

Loaded 
area 
No. 

Dimensions [m] Load 
p = γ h 

[kN/m2] 

Foundation 
level 
tf [m] 

Origin coordinate 

L B h x [m] y [m] 

1 3 35 0.75 19×0.75 = 14.25 1.5 -3 -6 

2 5 35 1.15 19×1.15 = 21.85 1.15 -3 -3 

3 8 5 0.40 19×0.40 = 7.6 0.4 27 2 

4 8 5 0.40 19×0.4 = 7.6 0.4 -3 2 
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Figure 4.34 Rafts I and II are connected by a hinged joint (case 3) 
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Figure 4.35 Rafts I and II are constructed side by side (cases 1 and 2) 
 
 

 
 
Figure 4.36 Rather than rafts I and II, only one raft is constructed (case 4) 
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6 Analysis 
6.1   General 
 
The rafts are subdivided into 640 square finite elements, each element has a side of 0.625 [m] as 
shown in Figures 4.34 to 4.36. The analysis of rafts in case 2 (analysis with interaction but 
without shearing forces) is carried out by using a net for the two rafts. The free distances 
between the rafts are carried out by inserting appropriate two elements between rafts. Then, the 
boundary nodes of these elements are eliminated. After that the width of these two elements is 
defined by a = 0.0 [m]. 
 
To simulate a hinged joint between rafts in case 3 (analysis with interaction and with shearing 
forces), two very small elements are inserted between the rafts. Each element has 1 [cm] width 
and 2 [cm] thickness. The very small widths of the elements keep the distance between the rafts 
nearly zero, while the small thickness of the elements makes the raft rigidity at the joint very 
small. These boundary conditions allow interacting only the vertical forces between rafts. 
Moments at hinged connection will be eliminated due to the very small rigidity of connection 
elements. For all cases of analyses, the horizontal forces due to water pressure or earth pressure 
are neglected. 
 
6.2 Choice of the calculation method for studying the influence of the joint 
 
A primary analysis was carried out by the modulus of compressibility method (method 7). It was 
found that this method maybe causes numerical problems (These problems also occur when 
applying the modulus of compressibility method using iteration (method 6)). The numerical 
problems were due to the light loads distributed uniformly on the pool in addition to stiff edges 
as a result to edge walls. Consequently, negative contact pressures occur by applying the 
modulus of compressibility method. Therefore, all analysis of the pool were carried out by 
Modification of modulus of subgrade reaction by iteration (method 4). The iteration process of 
the method is repeated till the difference between the results of the step i and those of the step of 
i +1 are nearly the same. In this example 20 steps were sufficient for the analysis. 
 
6.3 Choice of the calculation method for studying  
 the influence of the surrounding loading 
 
The loads from filling around the swimming pool (21.85 [kN/m2]) are higher than those acting 
on the swimming pool itself (12 [kN/m2]). Therefore, it is expected great settlements on the 
swimming pool due to the filling. In this case, negative contact pressures will be expected on the 
swimming pool. Internal forces on the swimming pool and edge walls cannot be calculated due 
to this extreme case. Here, only a settlement calculation is carried out to show the influence of 
the surrounding loading due to filling using the modulus of compressibility method (method 7). 
 
6.4 Consideration of the irregularity of the subsoil material 
 on the behavior of the swimming pool 
 
The available information about the subsoil under the swimming pool is five boring logs B1 to B5. 
Each boring has four layers as shown in Figure 4.33 and Table 4.8. Arrangement of boring locations 
are shown in Figure 4.37. In order to carry out the analysis of the swimming pool taking into 
account the irregularity of the subsoil, the whole foundation area is subdivided into triangle zones as 
shown in Figure 4.37. Then, the flexibility coefficients are determined by Interpolation method. 
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Figure 4.37 Locations of boring logs B1 to B5 with interpolation zones 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

B1 (C) (16.0,13.0) 

B2 (A) (1.0,10.0) 

B5 (A) (28.0,7.5)

B4 (B) (20.5,1.0)B3 (D) (1.0,1.0) 

Zone type (I): Bilinear interpolation in the triangle area 

Zone type (II): Linear interpolation between 2 boring logs 
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Figure 4.38 Swimming pool with loads and external loaded areas 1 to 4 
 
 
 
 
 
 



Theory for the calculation of shallow foundations 
Chapter 4        System of many Foundations  
 

 4 - 48 

7 Results and discussion 
7.1 Studying the influence of the joint 
 
Figures 4.39 to 4.50 show the contour lines of settlements, isometric view of contact pressures, 
circular diagrams of moments for the four cases of analysis while Figure 4.51 shows settlements, 
contact pressures and moments at the middle section a-a. Figures 4.52 to 4.59 show the internal 
forces in the edge walls. 
 
In general, it can be noticed from those figures that: 
 
Settlements: 
 
˗ Settlements at the edges (points 1 and 2) of the rafts with joints (cases 2 and 3) are
  greater than that without interaction (case 1) and without joint (case 4), Figure 
4.51a. 
 
˗ Settlements for rafts with joints (cases 2 and 3) are nearly similar (Figures 4.40, 4.41 and
 4.51a). 

 
˗ If hinged joint between rafts is used (case 3), there will be continuation of settlement
 under the rafts (Figure 4.51a). 

 
˗ A continuation of settlement under the rafts with free joint (case 2) is also found, this
 related to the loads on both rafts are equal  (Figure 4.51a). 

 
˗ The analysis of rafts with interaction showed that both rafts would lean toward each 
other (Figures 4.40 and 4.41). 
 
Contact pressures: 
 
˗ If hinged joint between rafts is used (case 3), there will be continuation of contact
 pressure under the rafts at the joint (Figures 4.45 and 4.51b). 
 
˗ Slight differences in contact pressures at the edges (points 1 and 2) of the rafts with free
 joint (case 2) occur (Figure 4.44). 
 
Moments: 
 
˗ Moments for rafts without interaction (case 1) and for the raft without joint (case 4) are
 much greater than that for rafts with joints (cases 2 and 3), Figures 4.47 to 4.50 and
 Figure 4.51c. 
 
˗ For rafts with joints (cases 2 and 3), the positions of maximum moments are shifted to
 the center of the rafts (Figure 4.51c).  
 
˗ It is clear from Figure 4.51c for rafts with joints (cases 2 and 3) that, the moment at the
 joints for the two rafts is tends to zero. 
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Internal forces in walls: 
 
˗ Moments will be minimum if a raft with joint is used (cases 2 and 3), Figures 4.53 and
 4.54. Moments and shear forces for rafts without interaction (case 1) is unreal (Figures
 4.52 and 4.56). 
 
˗ For the raft without joint (case 4) a positive maximum moment at the position of
 connection is to be found (Figures 4.55), while for rafts with joints the moments are
 equal to zero at that position due to joints (Figures 4.53 and 4.54). 
 
˗ Moments and shear forces for the rafts with joints (cases 2 and 3) are nearly similar
  (Figures 4.53, 4.54, 4.57 and 4.58). 
 
Finally, it can be concluded that: 
  
˗ Considerable differences will be expected in the results, if the analysis is carried out for
 rafts without and with interaction. 
 
˗ The results for the rafts with free joint (case 2) and with hinged joint (case 3) are nearly
 similar in this example. 
 
˗ If rafts with free joint (case 2) have equal loads, only slight differences will be expected
 at the position of joint connection. Therefore, both of the two types of joints (hinged or
 free) may be used in this example. 
 
˗ Although the rafts with joints (cases 2 and 3) lead to higher settlements than that without
 joints (case 4), but give less internal forces. 
 
˗ The suitable foundation system may be used in this example is the rafts with joints (case
 2 or 3). 
 
7.2 Studying the influence of surrounding loading 
 
Figure 4.60 shows contour lines of the settlement under the swimming pool due to the 
surrounding loading only. As it is expected, the settlement at the edge of the swimming pool 
near the surrounding loading is about 2.5 [cm] greater than that due to the swimming pool itself 
(Figures 4.39 to 4.42) by application of the four cases of analysis concerning the joint. Figures 
4.61 to 4.64 show the contour lines of settlement under the swimming pool due to both loads 
from filling and swimming pool itself. These figures show that the direction of the settlements is 
changed toward the surrounding loading. To overcome extreme results concerning the internal 
forces on the swimming pool in this case, it is recommended that most of the filling must be 
carried out before constructing the swimming pool. 
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Figure 4.39   Contour lines of settlements s [cm] 
            Analysis without interaction (case 1) 
 
 
 
 
 

 
 
Figure 4.40 Contour lines of settlements s [cm] 
            Analysis with interaction and without shearing forces (case 2) 
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Figure 4.41    Contour lines of settlements s [cm] 
            Analysis with interaction and with shearing forces (case 3) 
 
 
 
 
 
 
 

 
 
Figure 4.42    Contour lines of settlements s [cm] 
            Analysis without joint (case 4) 
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Figure 4.43 Isometric view of contact pressures q [kN/m2] 
            Analysis without interaction (case 1) 
 
 
 
 
 

 
 
 
 
Figure 4.44 Isometric view of contact pressures q [kN/m2] 
            Analysis with interaction and without shearing forces (case 2) 
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Figure 4.45 Isometric view of contact pressures q [kN/m2] 
            Analysis with interaction and with shearing forces (case 3) 
 
 
 
 
 

 
 
Figure 4.46 Isometric view of contact pressures q [kN/m2] 
            Analysis without joint (case 4) 
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Figure 4.47 Circular diagrams of moments mx [kN.m/m] 
            Analysis without interaction (case 1) 
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Figure 4.48 Circular diagrams of moments mx [kN.m/m] 
            Analysis with interaction and without shearing forces (case 2) 
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5 [kN.m/m] 10 [kN.m/m] 20 [kN.m/m]15 [kN.m/m]

 
 
Figure 4.49 Circular diagrams of moments mx [kN.m/m] 
            Analysis with interaction and with shearing forces (case 3) 
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Figure 4.50 Circular diagrams of moments mx [kN.m/m] 
            Analysis without joint (case 4) 
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Figure 4.51 Settlements, contact pressures and moments at middle section of rafts I and II 
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Figure 4.52 Beam-bending moments Mb [kN.m] at edge walls of the swimming pool 
            Analysis without interaction (case 1) 
 
 
 
 
 
 
 
 
 

 
 
 
Figure 4.53    Beam-bending moments Mb [kN.m] at edge walls of the swimming pool 
            Analysis with interaction and without shearing forces (case 2) 
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Figure 4.54   Beam-bending moments Mb [kN.m] at edge walls of the swimming pool 
            Analysis with interaction and with shearing forces (case 3) 
 
 
 
 
 
 
 
 
 

 
 
 
Figure 4.55    Beam-bending moments Mb [kN.m] at edge walls of the swimming pool 
            Analysis without joint (case 4) 
 
 
 

113

50

50 [kN.m]
0

70

98

85

52

 
50 [kN.m]
0

119

105
59

94

108



Theory for the calculation of shallow foundations 
Chapter 4        System of many Foundations  
 

 4 - 59 

 
 
 
Figure 4.56 Beam-Shearing forces Qs [kN] at edge walls of the swimming pool 
            Analysis without interaction (case 1) 
 
 
 
 
 

 
 
 
Figure 4.57    Beam-Shearing forces Qs [kN] at edge walls of the swimming pool 
            Analysis with interaction and without shearing forces (case 2) 
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Figure 4.58    Beam-Shearing forces Qs [kN] at edge walls of the swimming pool 
            Analysis with interaction and with shearing forces (case 3) 
 
 
 
 
 
 
 
 
 

 
 
Figure 4.59    Beam-Shearing forces Qs [kN] at edge walls of the swimming pool 
            Analysis without joint (case 4) 
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Figure 4.60    Contour lines of settlements under the swimming pool  
  due to the filling around it. 
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Figure 4.61 Contour lines of settlements s [cm] 
            Analysis without interaction (case 1) 
  With influence of surrounding loading 
 
 
 
 
 
 

 
Figure 4.62 Contour lines of settlements s [cm] 
            Analysis with interaction and without shearing forces (case 2) 
  With influence of surrounding loading 
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Figure 4.63    Contour lines of settlements s [cm] 
            Analysis with interaction and with shearing forces (case 3) 
  With influence of surrounding loading 
 
 
 
 
 
 

 
 
Figure 4.64    Contour lines of settlements s [cm] 
            Analysis without joint (case 4) 
  With influence of surrounding loading 
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The foundation is considered as rigid, elastic or flexible, depends on the ratio between the 
rigidity of the foundation and the soil. The oldest work for the analysis of foundation rigidity is 
that of Borowicka (1939). He analyzed the problem of distribution of contact stress under 
uniformly loaded strip and circular rigid foundations resting on semi-infinite elastic mass. The 
analysis showed that the distribution of contact stress, which is dependent on the relative 
stiffness of the soil-foundation system, kB, is defined by 
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where 
vb  Poisson’s ratios for foundation material     [-] 
vs  Poisson’s ratios for soil       [-] 
Eb Young’s modulus of foundation materia     [kN/m2] 
Es Modulus of elasticity of the soil      [kN/m2] 
b  Half-width for the strip foundation or radius for the circular foundation [m] 
d  Thickness of foundation       [m] 
 
In which, kB  = 0 indicates a perfectly flexible foundation, and kB  = ∞ means a perfectly rigid 
foundation. 
 
After Borowicka’s analysis, many authors introduced formulae to find the foundation rigidity for 
plates resting on different subsoil models. For examples, Gorbunov/ Posadov (1959) introduced 
formula for an elastic solid medium. Cheung/ Zienkiewicz (1965) introduced formulae for 
Winkler springs and isotropic elastic half space model. Vlazov/ Leontiv (1966) introduced 
formula for a two-parameter elastic medium. A good review for those formulae may be found in 
Selvadurai (1979).  
 
  
Lately, based on great number of comparative computations for the modulus of compressibility 
method, Graßhoff  (1987) proposed various degrees of system rigidity between foundation and 
the soil until case of practical rigidity using Equation 5.2. The equation still used in many 
national standard specifications such as German standard (DIN 4018) and Egyptian Code of 
Practice (ECP 196-1995). 
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wobei: 
Eb Young’s modulus of the foundation material [kN/m2] 
Es Modulus of elasticity of the soil  [kN/m2] 
d  Foundation thickness    [m] 
l  Foundation length    [m] 
 
 
In which, kst ≥ 2 indicates very rigid foundation, kst ≤ 0.005 indicates flexible foundation and 
0.005 < kst > 2 indicates semi rigid foundation according to the Egyptian code of practice (ECP). 
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While, kst = 1 indicates rigid foundation, kst = 0.1 indicates stiff foundation and kst = 0.01 
indicates flexible foundation according to Graßhoff  (1987). 
 
It is noticed that, most of the available formulae used to determine the foundation rigidity 
assuming that the footings or rafts having regular shape, supporting simple load geometry. 
Besides the soil model is an isotropic elastic half space soil model or soil model of a 
homogenous  layer. This means that the practical application of those formulae is limited to 
certain problems. Figure 5.1 shows some practical problems where the use of traditional 
formulae may be not applicable for the analysis of foundation rigidity. Furthermore, the use of 
traditional formulae may be not acceptable if nonlinear analysis of the soil is considered, or if 
external influences such as the effect of tunneling, neighboring foundations are expected. 
It is found that, the foundation rigidity depends on the depth of the soil layers and their elastic 
properties, foundation geometry, foundation material, foundation thickness and the distribution 
of loading.  
 
Recently, El Gendy (1998) and (1999) proposed accurate analysis to find the foundation rigidity, 
which can consider all the above factors. This analysis offers the possibility to find the rigidity 
of rafts having any shape considering holes, re-enter corners, variable thickness with different 
loading types and geometry and resting on irregular subsoil layers. The analysis deals with each 
foundation as an independent problem, in which two solutions are carried out, full flexible and 
full rigid, besides the elastic solution. Through those solutions, the system rigidity of foundation 
for any practical problem on a real subsoil model can be obtained for high accuracy. This 
analysis is described in the following section. 
 

 
 

Soil layer 

Soil layer 

d) Ribbed foundationc) Foundation with variable thickness

a) Foundation on irregular subsoil b) Grid foundation or foundation with opening

Soil layer 3
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Figure 5.1 Some practical examples where traditional formulae may be not applicable 
 
 
5.2  Determination of foundation rigidity 
 
Today, The finite element method is the most powerful procedure. It can be applied to nearly all 
engineering problems. In spite of the successful using of the finite element method in the 
analysis of foundations, it may cause numerical problems during the solution of the system of 
linear equations if the foundation is rigid enough. It can be drawn in this problem that, the 
foundation (if it is sufficiently thick and without eccentricity about both axes) will be far stiffer 
than the soil, so the displacements beneath the foundation will mostly be the same at all points. 
Here, assuming the foundation is perfectly rigid is reasonable. Accordingly, the two solutions, 
full flexible and full rigid, besides the elastic solution by finite element method are used to 
estimate the foundation rigidity or the rigid thickness of the foundation. 
 
 
5.2.1 Flexible solution 
 
This solution represents a foundation has zero % degree of system rigidity. If the foundation is 
perfectly flexible (such as an embankment), then the contact stress will be equal to the gravity 
stress exerted by the foundation on the underlying soil. 
 
For the set of grid points of the foundation, the soil settlements are given by: 
 

    Qcs         (5.3) 
 
where: 
{s} Vector of soil settlements 
[c] Flexibility matrix of the soil 
{Q} Vector of contact forces 
 
 
5.2.2 Rigid solution 
 
This solution represents a foundation has 100% degree of system rigidity. If the foundation is 
completely rigid, two forms for foundation settlement are expected: 
 

i) If foundation is subjected to a centric load, all points on the foundation will settle 
the same value wo. 

 
 ii) If foundation is subjected to an eccentric load, the foundation will rotate as a rigid
  body and will be differential vertical movement between points on the 
foundation,  but all points will remain in the same plane. 
 
For a completely unsymmetrical external loading, the unknowns of the interaction problem are 
the n contact pressures qi, the rigid body translation of the foundation wo and the rigid body 
rotations θxo and θyo of the foundation about the axes of the geometry centroid. Considering the n 
compatibility equations of rigid foundation translation and the settlement of subsoil at the n 
nodal points and the three equations of overall equilibrium gives the following equation: 
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       Δ    T
s XkXN      (5.4) 

 
where: 
{Δ} Vector of rigid body displacement wo and the rigid body rotations θxo and θyo of the
 foundation. 
[X]T Coordinate matrix. 
{N} Vector of the resultant forces and moments on the foundation 
[ks] Soil stiffness matrix 
 
 
5.2.3  Elastic solution 
 
This solution represents a foundation has degree of system rigidity between > 0% and <100%. 
The elastic solution considers the compatibility of deformations between the foundation and the 
soil medium. Here, the soil settlement s equals to the foundation deflection w. The stiffness 
matrix of the whole foundation system is the sum of the foundation stiffness matrix [kp] and the 
soil stiffness [ks].  
 
The following matrix equation expresses the equilibrium of the foundation-soil system: 
  

        Pkk sp  δ       (5.5) 

 
where: 
{P}  Vector of the known applied loads and moments on the foundation 
{δ}  Nodal displacements vector of the foundation. Each nodal displacement constitutes the 

foundation deflection w and the two rotations θx and θy about x and y-axes, respectively 
 
5.2.4  Parameter kr 
 
The main cofactor in Equations 5.3, 5.4 and 5.5 is the displacement w, which here equal to the 
soil settlement s. Therefore, the definition of the rigid body movement is used to find the rigid 
thickness of the foundation. In fact, if the foundation is completely rigid, it will rotate as rigid 
body and it will be differential vertical movement between points on the foundation but all 
points will remain in the same plane. Therefore, Equation 5.4 gives easily the plan of translation, 
which can be defined only by three points. Consequently, the elastic settlements (=foundation 
deformations) of any three points on the foundation can define the whole foundation form if 
compared with those of rigid translations at the same three points. 
The parameter kr [%] at any three selected points at least on the foundation can be used to 
represent the foundation rigidity. This parameter is a function of the elastic settlement s and the 
rigid body translation w as given below: 
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i

i
r w

s
k      (5.6) 

 
where: 
si  Settlement at point i 
wi  Rigid body translation at point i 
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Δsi Absolute difference between si and wi at that point i 
 
The foundation may be considered practically rigid at a thickness (or system rigidity) gives kr 
more than 90% for three selected points on it. 
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Example 5.1 Rigidity of a simple square raft 
 
1 Description of problem 
 
For comparison with complex foundation rigidity problems, no solution is yet available. 
Therefore, for judgment on the analysis of El Gendy (1998) to find the system rigidity of 
foundation, consider the simple example of raft foundation shown in Figure 5.2. The raft has 
dimensions of 12 m × 12 m and carries four symmetrical and equal loads, each of P = 9000 
[kN]. The raft rests on a homogenous soil layer of thickness 20 m. The Young’s modulus of the 
raft and soil materials are Eb = 2×107 [kN/m2] and Es = 10000 [kN/m2], respectively. Poisson’s 
ratio of the raft material is νb= 0.15. 
 

 
 
Figure 5.2 Raft dimensions, loads and subsoil 
 
 
Deninger (1964) studied the same example using the finite difference method by dividing the 
raft into 6×6 elements. Each element had dimensions of 2 [m]×2 [m]. He examined the raft 
thickness for several values of 0.4, 0.5, 0.6, 0.8 and 2 [m]. 
 
The moment at any point on the raft foundation depends on the system rigidity of the foundation, 
external load values and load distributions. So, the moment mx at the position of the concentrated 
load, independently of rigidity formulae, can be used to find the rigid thickness of the raft in this 
example. Here, the raft is considered rigid at a thickness gives moment mx more than 90% of the 
maximum moment that can occur at that point. 
 
The raft in this example is considered rigid for thickness more than 0.85 m according to 
Deninger’s analysis. An application for Equation 5.2 to this example gives a system rigidity kst = 
0.71. So, the raft is considered very stiff according to system rigidity of Graßhoff (1987). 
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2 Analysis and discussion 
 
Series of computations using the finite element method for several values of raft thickness are 
carried out. The moments and the settlements at some selected points are plotted against the raft 
thickness to describe the foundation rigidity. 
  
First, the raft is subdivided first into 24 × 24 square elements. Each element has dimensions of 
0.5 [m] × 0.5 [m]. Then, it is subdivided into 12 × 12 square elements. Each element has 
dimensions of 1 [m] × 1 [m] as shown in Figure 5.3. Taking advantage of the symmetry in 
shape, soil and load geometry about x- and y-axes, the analysis is carried out only for a quarter 
of the raft. 
 

  
Figure 5.3 Finite element meshes of the raft 
 
 
To show the convergence of the solution by finite element method and to verify the rigid 
thickness of the raft, the settlement s, at four characteristic points a, b, c and d on the raft and the 
rigid body translation wo when the raft is perfectly rigid, are plotted against the raft thickness in 
Figure 5.4 and 5.5. In which: 
 
Point (a) Corner point of the raft 
Point (b) Middle point of the raft edge 
Point (c) Point under the load position 
Point (d) Center point of the raft 
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Figure 5.4  Settlement at the four characteristic points using mesh of 24 × 24 elements 
 
 

 
 
Figure 5.5 Settlement at the four characteristic points using mesh of 12 × 12 elements 
 
 
Figure 5.6 shows the moment mx at point c under the concentrated load position using finite 
element mesh of 24 × 24 elements and 12 × 12 [m] elements, respectively. 
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Figure 5.6  Moment mx at characteristic point c 
 
 
Figure 5.4 indicates that, if a fine mesh of 24×24 elements is used, the solution for the raft 
thickness far 0.8 [m] will become divergence. In which no stability in the overall matrix occurs. 
As a result, if the foundation is rigid enough, the raft rotations will approach to zero and the raft 
will settle the same value of a displacement wo. This cause, the number of equations becomes 
greater than the number of unknowns. Another problem may be found that, the relation between 
the plate element thickness and element size is limited by application of the finite element 
method using plate-bending elements. 
 
Figure 5.5 shows that, using a mesh of 12×12 elements gives good results. A comparison 
between Figure 5.4 and 5.5, indicates that, although the solution by using a fine mesh of 12×12 
elements is divergence, the rigid thickness of the raft can be determined because the limit of 
rigid translation is known from the rigid solution.  
 
Figure  5.6 shows that, the Deninger’s analysis cannot be used, in case of using a fine mesh of 
24×24 elements, to find the rigid thickness of the raft where the position of maximum moment at 
point c is not clear in the figure. Further, for a raft with complex load geometry or types, using 
this analysis is not practical, which represents the rigidity of the foundation only at the selected 
point. 
 
Figure 5.7 shows the parameter kr for the four characteristic points a, b, c and d of the raft. 
Figure 5.8 shows the parameter kr for the same characteristic points if a uniform load of 250 
[kN/m2] replaces the external concentrated loads on the raft, which equal to the average contact 
pressure, using also mesh of 12×12 elements. 
 
The raft may be considered as rigid at thickness gives kr more than 90% for all characteristic 
points. 
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From Figure 5.7, the raft is considered rigid for thickness more than 0.80 [m]. The moment for 
this thickness mx is 93 [%] from maximum moment at point c. This thickness also is different 
from that of Deninger (1964) by 5.6 [%] and makes the raft very stiff according to Graßhoff 
(1987). 
 
According to this analysis, Figure 5.8 shows that, the raft is considered rigid for thickness more 
than 0.7 [m] when it carries a uniform load of 250 [kN/m2]. This means that the type of loading 
has influence on the raft rigidity. Although the solution in this example is reported for a square 
raft, the approach can be also considered applicable for general problems.  
 
 

 
 
Figure 5.7 Parameter kr for the characteristic points (raft carries concentrated loads) 
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Figure 5.8 Parameter kr for the characteristic points (raft carries a uniform load) 
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Example 5.2  Rigidity of irregular raft on irregular subsoil 
 
1 Description of problem 
 
A general numerical example is carried out to show the applicability of system rigidity analysis, 
which proposed by El Gendy (1998), to find the rigid thickness of rafts of any shape considering 
re-entrant corner and opening within the rafts. 
In one case the raft carries many types of external loads; concentrated loads, distributed load, 
line load and moments in x-and y-direction as shown in Figure 5.9. The raft parameters are 
Young’s modulus Eb = 2×107 [kN/m2] and Poisson’s ratio νb =  0.25. The level of foundation is 
df = 2.7 [m]. 
 

 
 
Figure 5.9 Raft dimensions, loads 
 
 
The subsoil under the raft is characterized by three boring logs. Each has three layers with 
different materials. The moduli of compressibility of the three layers for loading are Es1  = 9500 
[kN/m2], Es2  = 22000 [kN/m2] and Es3  = 120000 [kN/m2] while for reloading are Ws1  = 26000 
[kN/m2], Ws2  = 52000 [kN/m2] and Ws3  = 220000 [kN/m2]. Poisson’s ratio is assumed 0.3 and 
constant for all soil layers. The effect of reloading and water pressure is taken into account. 
Boring logs and locations are shown in Figure 5.10. 
 
2 Analysis and discussion 
 
The available solution from Kany/ El Gendy (1995) for the analysis of raft foundations on three-
dimensional subsoil model using interpolation method is used here in the analysis of this general 
example. 
  
Four points on the raft are chosen to estimate the parameter kr, which represent the whole 
foundation rigidity as shown in Figure 5.10-a. Figure 5.11 shows the parameter kr for these 
points. It can be seen that, the raft is considered rigid for a thickness more than 1.01 [m]. 
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Figure 5.10 a) Boring locations and interpolation regions 
                        b) Boring logs B1 to B3 
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Figure 5.11  Parameter kr for the characteristic points a, b, c and d 
 
 
Another parameter kʹr similar to kr  is obtained from the contact pressure shape. This parameter 
is plotted against raft thickness and for the 4 points in Figure 5.12. In which kʹr is given by: 
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where: 
qi  Contact pressure from elastic analysis at point i 
gi  Contact pressure from rigid analysis at point i 
Δqi Absolute difference between qi and gi at that point i 
 
Although Figure 5.12 gives a rigid thickness more than 1.05 [m] nearly as the same as that of 
Figure 5.11, but it is recommended to use kr in which the rigid movement plane can be described 
only by three points.  
 
To check the validity of the analysis for this example, the moments mx and my at point b are 
plotted against raft thickness in Figure 5.13. The moments at a raft thickness of 1.01 [m] are 
compared with the maximum moments that may occur at that point. It is found that, both 
moments mx and my check closely, where the value of mx is 92 [%] from maximum mx while the 
value of my is equal to 95 [%] at the same point. 
  
Although the raft in this example has a constant thickness, but it can determine the foundation 
rigidity when the thickness is variable. In this case, the rigidity of the foundation may be 
determined through plotting the parameter kr against Young’s modulus of elasticity of the raft 
material Eb at several values of Eb. 
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Figure 5.12  Parameter k´r for the characteristic points a, b, c and d 
 
 

 
 
Figure 5.13  Moment mx and my at characteristic point b 
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Example 5.3: Effect of girders on the raft rigidity 
 
1  Description of the problem 
 
Ribbed raft may be used for many structures have heavy loads or large spans, if a flat level for 
the first floor is not required. Consequently, concrete is reduced. Such structures are silos and 
elevated tanks. In spite of this type of foundation has many disadvantages if used in normally 
buildings, still used by many designers. Such disadvantages are the raft needs deep foundation 
level under the ground surface, fill material on the foundation to make a flat level and an 
additional slab on the fill material to construct the first floor. The use of the ribbed raft relates to 
the simplicity of analysis by hand calculations. 
First, both of the two rafts with and without ribs are clearly saves and correct, but there is still a 
question, whose one of the two types is more rigid? To answer this question the following 
example is presented. 
 
Consider the foundation of an elevated tank may be designed for both types of foundations. The 
foundation has the dimensions of 20 [m] × 20 [m], transmits equal loads for all 25 columns, each 
of 1000 [kN]. The loads give average contact pressure on soil qav = 62.5 [kN/m2]. Columns are 
equally spaced, 4 m apart, in each direction as shown in Figure 5.14. 
 

 
 
Figure 5.14 General plan of rafts 
 
The analysis of the foundation is carried out to study the effects of soil types, rigidity of girders 
and slabs. A detail description of each parameter is presented as follows: 
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Three subsoil models are considered:  
 i)  Simple assumption model (conventional method) that assumes linear distribution
  of contact pressure on the bottom of the slab. The model considers no interaction
  between the raft and the subsoil. 
 ii)  Winkler’s model that represents the subsoil by isolated springs. 
 iii)  Layered model that considers the subsoil as continuum medium. 
  
 
The raft resting on a soil layer of 20 [m] equals the raft side, overlying a rigid base. The soil 
types are represented by the modulus of elasticity, Es, for layered model, which yields modulus 
of subgrade reaction, ks, for Winkler’s model. Table 5.1 shows the different soil types examined 
in this example according to the soil properties Es and ks. Poisson’s ratio is taken νs  = 0.3 for all 
soil types. 
 
Table 5.1 Soil properties for different soil types 
 

Es [kN/m2] 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000

ks [kN/m3] 583 1166 1749 2332 2915 3498 4081 4664 5247 5830

 
3  Concrete material 
 
The parameters of raft material are Young’s modulus Eb = 2×107 [kN/m2], Poisson’s ratio νb =  
0.25 and shear modulus Gb = 1×107 [kN/m2]. 
 
4  Girders 
 
A rectangular cross section is used for the girders with constant width of 0.40 m. The effect of 
girder rigidity is studied by varying its depth dg. Influence of the effective flange width of the 
slab on the moment of inertia of the girder is neglected. 
 
5  Slab 
 
For different chosen values of girder depth dg, the corresponding values of slab thickness are 
0.25, 0.30, 0.35, 0.40, 0.45 and 0.50 [m]. 
 
6  Analysis and discussion 
 
The study of the raft is done for both cases, with and without girders. First the foundation is 
designed using working stress method according to the Egyptian code of practice (ECP), for 
concrete and steel grades fc = 60 [kg/cm2] and fs = 1400 [kg/cm2] respectively. The design is 
carried out using the classical method without interaction between the soil and the foundation. 
Through this design the dimensions of the raft with girders are slab thickness ds = 0.25 [m], 
girder depth dg = 0.85 [m] and girder width bg = 0.40 [m], while the thickness for the flat raft is 
dr = 0.55 [m]. The analysis is focused on the layered Continuum model, because it is more 
realistic than Winkler’s model for simulation of most soil types. 
6.1  System rigidity 
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 A good advantage of the foundation rigidity analysis, which proposed by El Gendy (1998), is 
the possibility to find the system rigidity of rafts having any shape such as ribbed rafts 
considered in this example. Therefore, series of computations are carried out for many variables 
with the parameter kr obtained at the center of the raft, to compare between the system rigidity of 
the two types of rafts with and without girders. 
 
Figure 5.15 shows the parameter kr with the raft thickness ds in case of the flat raft while Figure 
5.16 shows the parameter kr with girder depth dg at different slab thickness in case of the ribbed 
raft. Both of the two figures are considered for soil of Es = 10000 [kN/m2]. 
 

 
 
Figure 5.15 Parameter kr with raft thickness at the center of the raft (Es =10000 [kN/m2]) 
 
From these figures, it can be found that, the flat raft of thickness dr = 0.55 [m] gives parameter kr 

= 60 [%] while the raft of slab thickness ds = 0.25 [m] and girder depth dg  = 0.85 [m] gives 
parameter kr = 52 [%]. This means the ribbed raft designed by the classical method has rigidity 
less than that of the flat raft designed also by the same method. The ribbed raft, which gives 
parameter kr = 60 [%] equals to that of the flat raft, can be easily obtained from Figure 5.16. In 
which may be had one of the following dimensions in Table 5.2. 
 
Table 5.2 Dimensions of ribbed rafts, which give parameter kr =60 [%] 
 

Slab thickness ds [m] 0.25 0.30 0.35 0.40 0.45 0.50 

Girder depth dg  [m] 1.25 1.20 1.15 1.10 0.90 0.75 

 
 
 
From Figure 5.16, it can be concluded that, the slab thickness ds for rafts with a small girder dg 
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has great influence on the system rigidity. This influence decreases by increase the girder depth 
dg until dg = 2.0 [m], then becomes constant. This means that the girders of depth dg > 2.0 give 
most the system rigidity. 
 

 
 
Figure 5.16 Parameter kr with girder depth at the center of the raft (Es = 10000 [kN/m2]) 
 
 
To check the system rigidity of the rafts with and without girders at different soil types, the 
parameter kr for three selected rafts is plotted with the soil modulus Es as shown in Figure 5.17.  
 
The three rafts are: 
Raft 1 flat raft of thickness dr = 0.55 [m] 
Raft 2 ribbed raft has slab thickness ds = 0.25 [m] and girder depth dg =0.85 [m] 
Raft 3 ribbed raft has slab thickness ds = 0.25 [m] and girder depth dg =1.25 [m] 
 
Figure 5.17 shows that the rafts 1 and 3 that have the same system rigidity at soil type Es = 
10000 [kN/m2] have also the same system rigidities for all soil types. The range of the difference 
in kr of raft 2 and raft 1 (or raft 3) is 20 [%] to 5 [%] for weak soil of Es = 5000 [kN/m2] to 
medium soil of Es = 20000 [kN/m2]. This difference decreases slowly for Es > 20000 [kN/m2] 
with increase of Es until stiff soil of Es = 45000 [kN/m2], then kr of raft 2 becomes identical with 
that of raft 3. 
  
To show the influence of the soil types on the system rigidity of ribbed rafts, the parameter kr is 
plotted with the girder depth at different soil types as shown in Figure 5.18. The raft has 0.25 m slab 
thickness. From Figure 5.18, it can be noted that, the system rigidity of raft on weak soil increases 
quickly rather than that of raft on stiff soil with increase of girder depth. At a small depth dg, the 
difference in kr of raft on weak soil and that of raft on stiff soil is small. This difference increases 
slowly until depth dg = 1.75, then becomes nearly constant for the other depths more than 1.75 [m].  
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Figure 5.17 Parameter kr with soil modulus Es at the center of the raft 
 
 

 
 
Figure 5.18 Parameter kr with girder depth at different soil types at the center of the raft 
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6.2  Effect of girders on differential settlement between columns 
 
 The effects of the girder rigidity and the soil types on differential settlement are studied by 
comparing the differential settlement between central column cc and its adjacent column ca for 
the flat raft (raft 1) and ribbed rafts (rafts 2, 3). 
 
Figure 5.19 shows the differential settlement Δf with the soil rigidity represented by its modulus 
of elasticity Es. From Figure 5.19, it can be found that, the differential settlement Δf decreases 
quickly with the increase of Es from Es = 5000 [kN/m2] to 10000 [kN/m2], then decreases slowly 
with the increase of Es from 10000 [kN/m2] to 50000 [kN/m2] for both raft types. This figure 
indicates also that the differential settlement Δf for ribbed raft coincides with that of flat raft if 
the two types have the same rigidity (rafts 1 and 3) for all soil types. It is clearly that, the ribbed 
raft designed by classical method (raft 2) has differential settlement higher than that of rafts with 
and without girders (rafts 1 and 3), which have the same rigidity in case of weak soil. The 
increasing in differential settlement for raft 2 reaches 33 [%] to 14 [%] compared with those of 
rafts 1 and 3 in cases of soils have Es = 5000 [kN/m2] and Es = 10000 [kN/m2] respectively. 
However, for Es greater than 25000 [kN/m2] until for stiff soil the differential settlement for raft 
2 becomes less than that of rafts 1 and 3. 
 

 
 
Figure 5.19 Differential settlement Δf between columns with soil modulus Es 
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 Figure 5.20 shows the distribution of contact pressure at section I-I for Winkler’s model, while 
Figure 5.21 shows the distribution for layered model. The contact pressure according to the 
conventional method is plotted at the same figures. As the contact pressure distribution is similar 
to that of settlement distribution for Winkler’s model. Therefore, Figure 5.20 shows also the 
settlement at section I-I multiplied by the modulus ks. 
 
The effect of girders on the contact pressure is clear along the rafts for both Winkler’s and 
layered models. Such effect is very remarkable for weak soil, where the presence of girders 
increases the contact pressure under the girders. On the other hand, the girders decrease this 
contact pressure in the middle of the panels. Other figures, are not included, show that the 
presence of girders leads to negative pressure at the corner of the raft in case of layered model 
for raft 2 of the less rigidity. The contact pressure of ribbed raft locates within the average range 
that of flat raft, if the two types have the same rigidity (rafts 1 and 3). This is obvious for stiff 
soil where may be coinciding with it. For the conventional method, the effect of girders plays no 
role on the contact pressure where is constant for all soil types and equal to the average load on 
the raft. 
 

 
 
Figure 5.20 Contact pressure at section I-I for Winkler’s model 
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Figure 5.21 Contact pressure at section I-I for layered model 
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Example 5.4: Comparison between raft and grid foundations 
 
1 Description of the problem 
 
El Arabi/ El Gendy (2001) examined the structural analysis and design of the three common 
foundation systems: raft, grid and isolated footings. They carried out the examination to evaluate 
the different types of structural systems in order to decide the most suitable ones for a specific 
situation. Here, an example is chosen from the above study with some modifications. Consider 
the foundation system shown in Figure 5.22, which may be designed as raft or grid. The raft 
dimensions are 30.5 [m] × 30.5 [m] while the overall grid dimensions are 33.0 [m] × 33.0 [m], 
with a constant strip width in both directions. The foundation carries 49 column loads, which are 
equally spaced, 5.0 [m] apart, in each direction. Column loads and the arrangement of columns 
are shown also in Figure 5.22. 
 

 
Figure 5.22 Foundation systems under consideration with loads 
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Both the raft and grid have the same uniform thickness d. The two foundations have the same 
contact area and column loads. Consequently, they will have the same average contact stress. 
Results are presented as functions of the ratio d/l, where l is the span between columns. For the 
sake of comparison, the volume of reinforced concrete of the entire foundation system whether 
raft or grid is kept unchanged. 
 
2 Concrete material 
 
The raft and grid are analyzed and designed for the following material parameters: 
 
Concrete grade   C 200 
Steel grade    S 36/52 
Concert cube strength   fcu = 200 [kg/cm2] 
Compressive stress of concrete fc = 8  [kg/cm2] 
Tensile stress of steel   fs = 1800 [kg/cm2] 
Young’s modulus of concrete  Eb =2×107 [kN/m2] 
Poisson’s ratio of concrete  νb = 0.20 
Unit weight of concrete  γb = 0.0 [kN/m3] 
Unit weight of concrete is chosen γb = 0.0 to neglect the own weight of the foundations. 
 
3 Soil properties 
 
The effect of the soil type is represented by changing the modulus of compressibility Es. 
Poisson's ratio and the unit weight of the soil are taken as νs  = 0.3 and γs = 18 [kN/m3] 
respectively for all soil types. Four different soil types are examined according to the soil elastic 
parameter Es, in which Es = 5, 10, 20, and 40 [MN/m2]. The thickness of the soil layer is 
considered according to the limit depth of the soil layer. 
 
4 Results and analysis  
 
It should be noticed that each of the two structural systems described above is valid as a 
foundation system for the problem under consideration. The raft and grid have the same average 
contact pressure on the soil, qav = 64 [kN/m2] and the same loading system. Accordingly, their 
contact areas are equal, Ar = 930.25 [m2]. Although the allowable bearing capacity (equal to 
average contact pressure) is always used to determine the foundation area, the maximum 
permissible settlement smax allover the foundation governs the allowable bearing capacity of the 
soil, especially for great foundation such as in this example. 
 
The analysis is carried out to study the effects of soil type and foundation thickness on the 
foundation behavior. The main results are the system rigidity, soil settlement, differential 
settlement, angular distortion, bending moments and the optimal thickness of foundation. A 
detailed description of the influence of each parameter is discussed in the following sections. 
 
4.1 Limit depth ts 
 
 The level of the soil under foundation at which no settlement occurs or the expected settlement 
will be very small where it can be ignored is defined as the limit depth of the soil. In this 
example, the limit depth is chosen to be the level at which the stress in the soil σE, resulting from 
the foundation pressure at the contact surface with soil, reaches the ratio ξ = 0.1 of the initial 
vertical stress σV. The stress in the soil σE is determined at the center of the foundation. As 
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mentioned before, the average stress resulting from the foundation pressure at the surface is σo = 
64 [kN/m2] for both the raft and grid (own weight of foundation is neglected). Results of the 
limit depth calculation are shown graphically in Figure 5.23. The computed limit depth is ts = 
19.53 [m] for raft and ts = 18.93 [m] for the grid under the ground surface. Figure 5.23 also 
shows that the stress on the soil due to the grid is less than that of the raft. This is because the 
grid foundation has a wider extension at the contact surface with the soil associated with many 
unloaded spots among the grid strips. The interaction between the stress fields in this case leads 
to better stress distribution in the subsoil than the case of raft foundation. Accordingly, it can be 
said that the grid system might give better solution when the building is constructed on a ground 
that contains weak soil layers at a relatively deep level. Moreover, the discontinuity of the grid 
system allows for drainage at the ground surface, which can lead to better consolidation 
behavior if a clay layer exists under the foundation. In such circumstances, it is recommended to 
investigate the settlement behavior of the system. 
 

 
 
Figure 5.23 Limit depth ts of the soil under both the raft and grid 
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gives maximum system rigidity if compared with the grid. The difference in rigidity between the 
two systems is about 25 [%] for all values of the ratio d/l. 
 

 
 
Figure 5.24 Variation of kr at the center of the raft with the ratio d/l for different soil types 
 

 
 
Figure 5.25 Variation of kr at the center of the grid with the ratio d/l for different soil types 
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Figure 5.26 Variation of kr at the foundation center with the ratio d/l 
  for soil of Es = 10 [MN/m2]  
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Figure 5.27 Maximum differential settlement between adjacent columns  
  with the ratio d/l for the raft 
 
 

 
 
Figure 5.28 Maximum differential settlement between adjacent columns  
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Figure 5.29 Maximum differential settlement between adjacent columns with the ratio d/l for 
  soil of Es = 10 [MN/m2]  
 

 
 
Figure 5.30 Settlement at foundation center with the ratio d/l for soil of Es = 10 [MN/m2]  
 
 
 
 
 
 
 

0

1

2

3

4

0.10 0.18 0.26 0.34 0.42 0.50

d/l

Raft
Grid

M
ax

. d
if

f.
 s

et
tl

em
en

t [
cm

] 

5.0

6.0

7.0

8.0

9.0

0.10 0.14 0.18 0.22 0.26 0.30

d/l

Raft
Grid

S
et

tl
em

en
t s

 



Theory for the calculation of shallow foundations 
Chapter 5              Foundation Rigidity  
 

 5 - 32 

4.4 Angular distortion 
 
In this analysis, the angular distortion 1/Lij between any two nodes i and j on the foundation is 
defined according to Hemsley (1998) as: 
 

ij

ji

ij L

ss

L




1
      (5.8) 

 
where: 
si and sj Nodal settlements 
lij  Distance between the nodes i and j.  
 
Relative to any "primary node" i (1 ≤ i ≤ n), it is a simple matter to scan all the remaining (n-1) 
nodes on the surface element mesh to locate the "secondary node" j associated with the 
maximum angular distortion. This procedure is repeated for each node in the mesh to give n 
values of maximum distortion, denoted by 1/Ln. 
 
Figures 5.31 and 5.32 show the contour lines of nodal angular distortion 1/Lij for raft and grid for 
different soil types. Moreover, a comparison between the limiting contour values for raft and 
grid is given in Table 5.3. The thickness of the raft and grid is d = 0.5 [m].  For the same soil 
conditions, the angular distortion is more considerable in the grid if compared with the raft. The 
stiffening effect of ribs reduces the grid distortion as can be seen clearly from Table 5.3. 
 
Table 5.3 Maximum and minimum contour values for raft and grid 
 

Foundation system 

Contour values of angular distortion reciprocal (1/Lij) 

Es [kN/m2] 

5000 10000 20000 40000 

Max. Min. Max. Min. Max. Min. Max. Min. 

Raft 220 150 410 270 775 500 1500 800 

Grid 165 115 310 210 625 400 1250 700 
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Figure 5.31 Contour lines of nodal angular distortion for a raft of 0.5 [m] thickness. 
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Figure 5.32 Contour lines of nodal angular distortion for a grid of 0.5 [m] thickness 
4.5 Optimal thickness 
 
In this study, the optimal thickness is defined as the minimum thickness of foundation for which 
the concrete section and tensile reinforcement are enough to resist the flexure moments without 
compressive reinforcement. The optimal design of reinforced concrete sections is based on the 
provisions of ECP 464 (1989) for working stress method. In this case, the maximum moment 
Mmax and the sustained moment Ma for the system under consideration are calculated for 
different values of the thickness t  (t = d + 5 [cm] cover). The maximum moment Mmax resulting 
in the foundation is obtained from foundation analysis. 
 
The sustained moment Ma for singly reinforced section according to working stress method is 
obtained from: 

 
1

2

2 

k

Bct
M a


      (5.9) 

 
where: 
c Concrete cover plus the radius of reinforcement bars. 
B Width of the section to be designed. 
k1 Coefficient for design of singly reinforced sections as given by code.  
 
The minimum thickness of foundation is obtained when both moments Mmax and Ma are equal. 
The optimal thickness of raft and grid is designed for the maximum moment obtained from the 
analysis. The maximum moment Mmax and the sustained moment Ma are calculated for the raft 
and grid at different values of the foundation thickness and for various types of soil. Sustained 
moments are calculated according to the working stress method of ECP 464 (1989). The Results 
are given in Figures 5.33 and 5.34. According to the results, the bending moments increase as 
the foundation thickness increases, and as the soil stiffness decreases as well. This is because the 
layered model used in the analysis strongly depends on the soil properties.  
 
The optimal thickness of raft and grid resting on different types of soil can be obtained from 
Figures 5.33 and 5.34 respectively. For a given soil, the optimal thickness is the thickness 
corresponds to the intersection of two curves: the optimal moment curve and the moment curve 
representing the given soil. It is clear that the optimal thickness of either raft or grid increases as 
the soil stiffness decreases. Unless it is essential, an unnecessary increase in the foundation 
thickness is not preferred as it attracts more bending moments and gives more costly design.  
 
For the problem under consideration when Es = 5 [MN/m2], Figures 5.33 and 5.34 show that the 
working optimal depths of raft and grid are respectively about 0.85 [m] and 0.95 [m], keeping in 
mind that l = 5.0 [m]. This means about 11 [%] material saving for the raft than that for the grid 
because both foundations have the same contact area. Furthermore, Figures 5.24, 5.25, 5.27, and 
5.28 show that the rigidities of raft and grid are 80 [%] and 63 [%], and the corresponding 
maximum span distortions are about 0.0028 and 0.004, respectively. Therefore, one can say that 
raft present the most appropriate solution for weak soil conditions. 
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Figure 5.33 Determination of optimal thickness of the raft 
 
 

 
 
Figure 5.34 Determination of optimal thickness of the grid 
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Based on the analysis and results discussed before, Table 5.4 gives some recommendations that 
can put the designer on the economic side and help him to choose an appropriate foundation 
system for certain soil foundation conditions. 
 
Table 5.4 Selection between raft and grid 
 

Case of selection 
Suitable foundation system 

Raft Grid 

Soil has Es ≥ 20 [MN/m2] --- x 

Soil has Es  <  20 [MN/m2] x --- 

Weak layer at relative deep level (z > 0.8 ts ) --- x 

Consolidated layer under foundation --- x 

Column span exceeds six times foundation thickness x --- 

Column span less than six times foundation thickness x x 

 
6 conclusions 
 
In general, the following conclusions are drawn: 
 
˗ For the two foundation systems, the bigger the foundation depth, the higher the system

 rigidity and the lower the settlement and angular distortion, especially for weak soil
 conditions.  

 
˗ Any unnecessary increase in the foundation thickness should be avoided because it leads

 to higher bending moments and more costly design. 
 
˗ For weak soil conditions, an optimal raft system seems to be the most appropriate and

 economic solution, because it has higher rigidity for smaller optimal thickness and it
 reduces the differential settlement. 

 
˗ Grid systems cause slightly lower stresses in the soil and their discontinuity at the 

contact surface may lead to better consolidation behavior, which might attract the 
designer interest when he deals with highly compressible soils. 

 
˗ On the same soil type, foundation area and thickness, the rigidity of the raft is more than

 that of the grid by Δkr = 25 [%]. 
 
˗ Angular distortion for the grid is less than that of the raft by 13 [%] to 25 [%]. 
 
˗ For weak soil, the raft saves about 11 [%] material comparing with the grid. 
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6.1 Introduction 
 
The presence of the structure on compressible subsoil causes settlements for the foundation and 
also for the structure itself. Values of settlements and settlement differences depend not only on 
the thickness of the compressible soil layer under the foundation, the value and distribution of 
structure loads, the foundation depth and contact pressure under the foundations but also on the 
flexural rigidity of the structure. 
 
One of the properties that has a considerable influence on the development of settlement is the 
rigidity of the superstructure. The more rigid structure has more uniform settlement and 
conversely, structure that is more flexible has greatest difference in settlement. The entire 
structure can be defined as the three media: superstructure, foundation and soil. The analysis of 
the entire structure as one unit is very important to find the deformations and internal forces. 
However, most of the practical analyses of structures neglect the interaction among the three 
media to avoid the three-dimensional analysis and modeling. The structure is designed on the 
assumption of non displaceable supports while the foundation is designed on the assumption that 
there is no connection between columns. Such accurate analysis of the entire structure is 
extremely complex. 
 
The early studies for consideration the effect of the superstructure were by Meyerhof (1953) who 
suggested an approximate method to evaluate the equivalent stiffness that includes the combined 
effect of the superstructure and the strip beam foundation. Kany (1959) gave the flexural rigidity 
of a multi-storey frame structure by an empirical formulae. Also, Kany (1977) analyzed the 
structure with foundation using a direct method. Demeneghi (1981) used the stiffness method in 
the structural analysis. Panayotounakos/ Spyropoulos/ Prassianakis (1987) presented an exact 
matrix solution for the static analysis of a multi-storey and multi-column rectangular plexus 
frame on an elastic foundation in the most general case of response and loading. 
 
At the analysis of foundations with considering the superstructure stiffness, it is required to 
distinguish between the analysis for plane structures (two-dimensional analysis) and that for 
space structures (three-dimensional analysis). Further, it is required to distinguish between 
approximation methods with closed form equations (Kany (1974), Meyerhof (1953), Sommer 
(1972)) and refined methods such as conventional plane or space frame analysis (Kany (1976)), 
Finite Elements (Meyer (1977), Ellner/ Kany (1976), Zilch (1993), Kany/ El Gendy (2000)) or 
Finite Differences (Bowles (1974), Deninger (1964)). 
 
In addition,  many analytical methods are reported for analysis of the entire structure as one unit 
by using the finite element. For examples: 
 
Haddadin (1971) presented an explicit program for the analysis of the raft on Winkler’s 
foundation including the effects of superstructure rigidity.  
 
Lee/ Browen (1972) analyzed a plane frame on a two-dimensional foundation.  
 
Hain/ Lee (1974) employed the finite element method to analyze the flexural behavior of a 
flexible raft foundation taking into account stiffness effect of a framed superstructure. They 
proposed the use of substructure techniques with finite element formulation to model space 
frame raft soil systems. The supporting soil was represented by either of two types of soil 
models (Winkler and half space models).  
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Poulos (1975) formulated the interaction of superstructure and foundation by two sets of 
equations. The first set links the behavior of the structure and foundation in terms of the applied 
structural loads and the unknown foundation reactions. The second set links the behavior of the 
foundation and underlying soil in terms of the unknown foundation reactions.  
 
Mikhaiel (1978) considered the effect of shear walls and floors rigidity on the foundation.  
 
Bobe/ Hertwig/ Seiffert (1981) considered the plastic behavior of the soil with the effect of the 
superstructure.  
 
Lopes/ Gusmao (1991) analyzed the symmetrical vertical loading with the effect of the 
superstructure.  
 
Jessberger/ Yuan/ Thaher/ Ming bao (1992) considered the effect of the superstructure in case of 
raft foundation on a group of piles.  
 
Zilch (1993) proposed a method for interaction of superstructure and foundation via iteration. 
 
Kany/ El Gendy (2000) proposed an iterative procedure to consider the effect of superstructure 
rigidity on the foundation. In the procedure, the stiffness of any substructure such as floor slab or 
foundation, connected by the columns can be represented by equivalent spring constants due to 
forces and moments at the connection nodes. Consequently the stiffness matrices of the slab 
floors, columns and foundation remain unaffected during the iteration process. 
 
 
6.2 Simplified modeling of superstructure foundation soil system 
6.2.1 Rigidity of the structure 
 
Sometimes at the analysis of shallow foundations, examining the influence of the structure 
rigidity is imperative. Two rigidities concerning the rigidity of the structure are required to be 
computed. The first rigidity is the flexural rigidity of the structure that is independent of the 
deformation behavior of the subsoil. The second one is the system rigidity that expresses the 
ratio of the flexural rigidity of the structure to the stiffness of the subsoil. 
 
In the analysis scope of shallow foundations, the following questions are required to be 
answered: 
 
˗ How flexural rigidity and system rigidity in a specific case are computed? 
 
˗ At which value of the system rigidity a structure can be described as practically rigid? 
 
˗ What is the influence of the flexural rigidity of the structure on the analysis results? 
 
The presence of the superstructure on the foundation causes besides the stiffness of the 
foundation alone further stiffness on the system. This influence is great, when the ratio of the 
flexural rigidity of a structure to that of the foundation is great. 
The flexural rigidities of the superstructure and foundation elements, and the stiffness of the 
subsoil have been identified by many authors (Brown/ Yu (1986), Lee/ Harrison (1970) and 
Meyerhof (1953)). The absolute stiffness of superstructure KB [kNm2], foundation KG [kNm2] 
and subsoil Ks [kNm2] or Kc [kNm2] can be obtained as it is described in the following section. 
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6.2.1.1 Flexural rigidity of the superstructure 
 
The flexural rigidity of the superstructure KB [kNm2] is expressed through the product of 
modulus of elasticity EB [kN/m2] of the superstructure material and the ideal moment of inertia 
IB [m4] of the entire superstructure system: 
 

BBB IEK         (6.1) 
 
According to Meyerhof (1953), the flexural rigidity of the multi-storey superstructure composed 
of slabs and columns (or walls) running in the longitudinal direction of the bending axis can be 
obtained approximately as follows (Figure 6.1): 
 

 
 

Figure 6.1 Details of multi-storey frame with foundation (Meyerhof’s formulae) 
 
 
i) The superstructure is open frame 
 
In any storey i of an open multi-storey building frame with approximately equal bays, the 
flexural rigidity is given by: 
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where: 
ns  Total number of storeys 
L  Total length of the superstructure (=ns l)   [m] 
Kr = Ir/l Average stiffness of floor      [m3] 
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Ir  Moment of inertia of floor     [m4] 
l  Length of bay or floor beam     [m] 
Ku = Iu/hu Average stiffness of lower columns    [m3] 
Iu  Moment of inertia of lower columns    [m4] 
hu  Height of storey under the floor    [m] 
Ko = Io/ho Average stiffness of upper columns    [m3] 
Io  Moment of inertia of upper columns    [m4] 
ho  Height of storey upper the floor    [m] 
Ii  Average moment of inertia of the storey i    [m4] 
 
The total stiffness of the entire superstructure is then given by: 
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       (6.3) 

 
ii) The superstructure is an open frame with wall cladding 
 
External building frames are generally stiffer than indicated above due to wall cladding. In this 
case the, frame consists of solid panels between the beams and columns and only shearing stress 
can be transmitted from the frame to the panels. Therefore, in any storey i the flexural rigidity of 
Equation 6.2 is increased further as: 
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where: 
Ef If  = Ef tw h3/12  Flexural rigidity of the panel (in vertical plane) [kNm3] 
If     Moment of inertia of wall    [m4] 
Ef    Modulus of elasticity of the wall material  [kN/m2] 
tw    Wall thickness      [m] 
h    Wall height      [m] 
 
iii) The superstructure is constructed as a deep beam 
 
If the wall cladding is fully continuous so that the whole frame behaves like a solid deep beam, 
the flexural rigidity of the frame itself can frequently be ignored compared with that of the wall. 
Therefore, the flexural rigidity of the superstructure can be approximately obtained from: 
 

12
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where: 
H Height of wall or superstructure [m] 
 
With sufficiently great number of bays nl, the following approximation Equation 6.6 for 
estimating the flexural rigidity of multi-storey open frames without wall cladding can be used: 
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where: 
Ks = Is/h Average stiffness of upper and lower columns  [m3] 
Is  Average moment of inertia of upper and lower columns [m4] 
 
Equation 4.6 is derived from Equation 4.2 when Ks ≈ Ku ≈ Ko = constant and nl

2 2Ks/(Kr +2Ks) 
»1 
 
 
6.2.1.2 Flexural rigidity of the foundation 
 
The flexural rigidity KG [kNm2] of a foundation of width B [m] and thickness d [m] is given by: 
 

12
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where: 
IG Moment of inertia of foundation   [m4] 
EG modulus of elasticity of the foundation material [kN/m²] 
 
Now, the total flexural rigidity of the entire structure Eb I [kNm2] can be defined as the sum of 
the flexural rigidities of the foundation KG [kNm2] and the superstructure KB [kNm2]. 
 

BBGGb IEIEIE           (6.8) 

 
where: 
I Ideal moment of inertia for the entire structure  [m4] 
Eb Average modulus of elasticity for the entire structure [kN/m²] 
 
 
6.2.2  Stiffness of the subsoil 
 
The stiffness of the subsoil for Winkler’s model depends on modulus of subgrade reaction ks 
[kN/m3] while for Continuum model depends on modulus of compressibility Es [kN/m2].  
For a rectangular foundation of width B [m] and length Lf [m] the stiffness of the subsoil for 
Winkler’s model Kw [kNm2] is given by: 
 

BLkK fsw   4       (6.9) 

 
while for Continuum model Kk [kNm2] is given by: 
 

BLEK fsk   3       (6.10) 
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6.2.3  System rigidities 
 
The decision of whether a structure or foundation has to be considered as rigid, elastic or flexible 
depends on the ratio between the rigidity of the superstructure including the foundation and the 
stiffness of the subsoil. 
 
If one neglects the superstructure, the system rigidity for Winkler’s model Kc [-] is given by: 
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while for Continuum model Ks [1] is given by: 
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where: 
Kc System rigidity for Winkler’s model    [-] 
Ks System rigidity for Continuum model   [-] 
EB Modulus of elasticity of foundation material   [kN/m²] 
I B d3/12 = Moment of inertia of foundation section  [m4] 
 
To consider the rigidity of the superstructure in Equations 6.11 and 6.12, the foundation 
thickness d [m] in the Equations is replaced by an ideal foundation thickness di [m]. The ideal 
foundation thickness di [m] is the thickness of a rectangular cross section which has the same 
ideal moment of inertia for the entire structure I [m4] and width B [m] according to Equation 6.8. 
 

3
 12

B
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di        (6.13) 

 
In addition, to take the effect of the superstructure on the foundation, the analysis of the 
foundation shall be carried out with ideal thickness of the foundation di [m] instead of the 
original foundation thickness d [m]. 
 
According to experiences and based on great number of comparative computations, the values of 
the system rigidity between foundation and subsoil, at which the system can be considered as 
rigid are already existed (Borowicka (1939), Graßhoff  (1987) and Kany (1974)). Table 6.1 
shows a list of different values for the system rigidity according to the German Standard DIN 
4018. 
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Table 6.1 Numerical values for different grade of system rigidity 
 

Winkler’s model 
Kbe = 12 Kc [1] 

Continuum model 
KSt = 12 Ks [1] 

Description 

KBe  0.2 KSt  1.0 Rigid 

0.2 > KBe  0.08 1.0 > KSt  0.4 Very stiff 

0.08 > KBe  0.04 0.4 > KSt  0.2 Medium stiff 

0.04 > KBe  0.02 0.2 > KSt  0.1 Stiff 

0.02 > KBe  0.008 0.1 > KSt  0.04 Elastic 

0.008 > KBe  0.004 0.04 > KSt  0.02 Medium elastic 

0.004 > KBe  0.002 0.02 > KSt  0.01 Very elastic 

0.002 > KBe 0.01 > Kst Flexible 

 
Besides the practical meaning of the system rigidity for the decision of structure rigidity, it can 
be also used to choose the applicable numerical model for specific case according to the system 
rigidity. In case of rigid foundations (or rigid structures), it is expected simplification results by 
computing the contact pressure and soil settlement. Therefore, a simplified numerical model may 
be used here. For Winkler’s model, the distribution of contact pressure changes to simple 
distribution like that of the simple assumption model. For Continuum model, the contact 
pressure for a regular foundation can be obtained directly by the closed formulae of Boussinesq. 
In addition, the tables of Kany (1974) for obtaining the contact pressure under rigid foundations 
are applicable here. For flexible structures such as a group of footings, the loads on the 
foundations are known (statically determinate structure). Therefore, only the interaction of 
footings through the subsoil due to the overlap stress in soil may be taken into account at the 
analysis. 
 
 
6.2.4 Modeling of wall-floor superstructure in the raft analysis 
 
In most design applications, the only significant additional stiffness is provided by shear walls. 
Here, modeling the wall and its floor connections by beam elements joined to the raft in the plan 
positions of the wall is normally sufficient. According to evaluated measurements of settlements, 
considering only one or two storey’s above the raft is usually necessary.  
 
 This stiffness can be determined approximately by defining the effective wall dimension. 
Guidelines for calculating effective flange width beff [m] according to Hemsley (1998) are given 
in Figure 6.2. Table 6.2 shows also effective flange widths for inner and edge walls. These 
effective flange widths depend on whether the floor slab is continuous on either sides of the wall 
or only on one side. Flange widths also depend on the wall spacing Bw [m] and span Lw [m]. In 
the analysis, the lowest of the three values of flange width beff [m] in Table 6.2 is used. 
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Figure 6.2 Effective flange widths for beams used to model wall-floor superstructure 
 
 
Table 6.2 Effective flange width of the wall 
 

Wall position Effective flange width beff [m] 

Inner wall beff = tw +12 ts beff = Lw /3 beff = Bw 

Edge wall beff = tw +4 ts beff = Lw /6 beff = Bw /2 

 
where in Table 6.2 ts [m] is the floor thickness. 
 
 
6.2.5 Determination of replacement wall height hErs 
 
To simulate the wall stiffness on the finite element mesh by using additional beam elements, the 
actual properties of the beam elements must be determined. The stiffness of the wall can be 
obtained through a replacement beam arranged in the center plane of the plate. The dimensions 
of the replacement beam can be taken as shown in Figure 6.3. This can be carried out by 
determining firstly the moment of inertia of the effective section of the wall Ipb [m4] that 
contains two parts, flanges and web. Then, the replacement height of the web hErs [m] can be 
determined by equating the moment of inertia Ipb [m4] to two equivalent moments of inertia. The 
first moment of inertia corresponds a rectangular flange Ip [m4] while the second corresponds a 
rectangular web Iw [m4]. The replacement height of the web hErs [m] must be higher than the sum 
of raft thickness d [m] and clear height of the wall hw [m]. In the finite element model, the wall 
and floor flange are represented by beam element has the property of tw [m] and hErs [m] while 
the raft flange is already included in the plate finite element. 
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Figure 6.3 Determination of replacement height hErs 
 
 
6.3  Direct modeling of superstructure-foundation-soil system 
 
To modeling of the superstructure-foundation-soil system, the stiffness matrix for the entire 
structure, must be derived from the summation of the stiffness matrices of superstructure, 
foundation and subsoil model. So, the three media can be treated as an integral unit. This can be 
applied by considering the compatibility of deformations between the superstructure, foundation 
and the soil medium, where the superstructure deformation is equal to the foundation 
deformation and the soil settlement is equal to the foundation deflection. 
 
The equilibrium equation for the entire structure (superstructure foundation subsoil model) is 
written in matrix form as: 
 

    FUKt        (6.14) 

 
where 
[Kt] Total stiffness matrix for the entire structure 
{U} Vector of nodal displacements for the entire structure 
{F} Vector of external nodal forces for the entire structure 
 
The above system of linear equations can be solved using one of the following methods: 
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c) Gauss elimination method. This method treats the total system of equations of the entire
 structure as one unit. Therefore, it requires large computer storage and long computation
 time. 
 
d) Substructure technique, where the set of nodal displacements {U} is divided into
 boundary displacements common to the superstructure and the supporting soil including
 the foundation displacements {Ub} and interior displacements of the superstructure
 {Ui}. Corresponding to each of these displacement sets is a set of external forces {Fb}
 and {Fi}, respectively. Then, the system of equations can be derived in two partitioned
 sets of equations. The boundary displacements {Ub} can be calculated by solving the
 first set of equations, then the interior displacements of the superstructure {Ui} can be
 obtained by performing back substitution of the internal nodes in which the boundary
 displacements {Ub} are already obtained. 
 
e) Iteration method, the iteration method allows less computer storage and short
 computation time. The iterative procedure that available in program ELPLA to analysis
 of the entire structure as one unit, which developed by Kany/ El Gendy (2000), is
 described in the following section. 
 
 
 6.4  Modeling of superstructure foundation soil system by iteration 
 
Most of the methods for analysis of the entire structure as one unit were focused on the 
interaction analysis of open framed structures on linear elastic subsoil models. An actual 
modeling for structure may also be used, where the columns, walls, slabs and foundation are 
modeled as a three dimensional problem using plate element and frame element having six 
degrees of freedom at each node comprising three translations (u, v, w) and three rotations (θx, θy 
, θz). In spite of the success of this method in the analysis of structure, the analysis is time-
consuming and requires large computer capacity. The use of such analysis leads to a great 
overall stiffness matrix of the structure. However, in many cases, the effects of some translation 
or rotation components may be ignored. For example, a structure carries vertical loading, due to 
the in-plane rigidity of the floors and foundation, has rigid body modes of displacements and no 
in-plane deformation are expected. That is why the in-plane stress and deformation can be 
neglected. In these cases the size of the stiffness matrix of structure will be considerably 
reduced, if a reasonable analysis is carried out. An example for this problem may be found in the 
analysis of common multi-storey-buildings, where the degree of freedom at nodes of adjacent 
substructures is different.  
 
In the raft foundation and floors each node has three degrees of freedom comprising one 
translation (w) and two rotations (θx, θy). In the superstructure components it has two translations 
(u, v) in the shear walls, three translations (u, v, w) and three rotations (θx, θy , θz) in a space 
frame. In the supporting soil it has only one translation (w). One of the advantages of the 
iterative procedure of Kany/ El Gendy (2000) is to overcome the incompatibility in the degree of 
freedom at the different adjacent substructures by reflecting only the required translations and 
rotations during the iteration process. Thus, minimization of the calculation effort will take 
place. 
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The iterative procedure presents an accurate and rapid method for linear and nonlinear analysis 
of foundation supporting multi storey buildings considering the effect of superstructure rigidity. 
Using this iterative procedure the computational time is significantly reduced compared with the 
traditional analysis of soil-structure problems. 
 
To perform the entire active structure-foundation analysis two computer programs were 
developed, one for the analysis of floor and foundation slabs with or without girders, the second 
program for the analysis of a space frame. The two programs are standard finite element solution 
for plate element and space-beam element types. 
 
6.4.1 Iterative procedure 
 
 To describe the iterative procedure, an idealized superstructure containing floor slabs and 
columns supported by a raft foundation is considered as a typical example shown in Figure 6.40. 
In the procedure the superstructure is partitioned into floor slabs and columns besides the 
foundation. The nodes are numbered for each substructure separately. To consider the effect of 
superstructure rigidity on the foundation an iterative procedure, Figure 6.4, can be described as 
follows: 
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Figure 6.4 Interaction of superstructure and foundation via iteration 
 
 

(0) complete structure

(3) foundation under column reactions

(2) columns on fixed supports

(1) floors on fixed supports

(4) columns on elastic supports {kf}

(7) foundation under column reaction {V}

(6) columns exposed to deformation {δf} 

(5) floors on elastic supports {kc} 
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(1) Each floor slab is analyzed separately as if it is rigidly attached to the columns
 (rotation=displacement=0). Then, the support reactions {R} at the position of the floor
 slabs attached to the columns are obtained 
 

    i
T

zyxzyxi RMRMRMRRRR  ,  ,  ,  ,  ,       (6.15) 

 
 where {R}i is the vector of support reactions of the floor slab at node i attached to the
 column; Rx, Ry, Rz, RMx, RMy and RMz are the support forces and moments in x-, y-
 and z-directions at that node. 
 
(2) Support reactions {R} from floor slabs are applied to the columns as external loads.
 Analyzing the frame of columns separately under these loads as if it is rigidly attached to
 the foundation (rotation=displacement=0). Then, the end reactions of columns {V}
 attached to the foundation are obtained 
 

    i
T

zyxzyxi VMVMVMVVVV  ,  ,  ,  ,  ,       (6.16) 

 
 where {V}i is the vector of support reactions at the column base attached to the
 foundation at node i; Vx, Vy, Vz, VMx, VMy and VMz are the support forces and
 moments in x-, y- and z-directions at that point. 
 
(3) The end reactions at the column bases {V} are applied to the foundation as external
 loads.  The foundation is analyzed to obtain the deformations of the foundations {δf} at
 the column base positions  
 

    i
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zfyfxffffif wvu θ , θ , θ ,  ,  ,  δ      (6.17) 

 
 where {δf}i is the vector of deformations of foundation at node i attached to the column
 base; uf, vf, wf, θxf, θyf and θzf are the displacements and rotations in x-, y- and z-
 directions at that point. 
 
(4) The above foundation deformations {δf} are used to obtain the foundation rigidity at the
 column bases. This is done by determining a set of spring constants {kf} to represent the
 foundation stiffness connections 
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 where kuf, kvf, kwf are transitional spring stiffnesses due to forces in x-, y- and z-
 directions. kθxf, kθyf  and kθzf are rotational spring stiffnesses due to moments in x-, y-
 and z-directions. 
 
 The analysis is performed on frame of columns separately under the previous loads {R} 
 as if it is resting on elastic supports having the spring constants {kf}. Then, the column 
 deformations {δc} at floor slab positions are obtained 
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    i
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zcycxccccic wvu θ , θ , θ ,  ,  ,  δ      (6.19) 

 
 where {δc}i is the vector of column deformations at floor slab position at node i; uc, vc, 
 wc, θxc, θyc and θzc are the displacements and rotations in x-, y- and z-directions at that 
 point. 
 
(5) The previous column deformations {δc} are used to obtain the column rigidity at the 
 floor slab positions. This is done by determining a set of spring constants {ks} to 
 represent the column stiffness connections  
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 where kuc, kvc, kwc are transitional spring stiffnesses due to forces in x-, y- and z-
 directions. kθxc, kθyc  and kθzc are rotational spring stiffnesses due to moments in x-, y- 
 and z-directions. 
 
 The analysis is performed on each floor slab separately as if it is resting on elastic 
 supports having the spring constants {kc}. Then, the floor slab deformations {δs} at 
 column positions are obtained 
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zsysxssssis wvu θ , θ , θ ,  ,  ,  δ      (6.21) 

 
 where {δs}i is the vector of deformations of floor slab attached to column at node i; us, 
 vs, ws, θxs, θys and θzs are the displacements and rotations in x-, y- and z- directions at 
 that node. Determination of the new support reactions {R} of the floor slabs attached to 
 the columns due to elastic supports 
 

   
  i

T
zyxzyx

i
T

xszcysycxsxcswcsvcsuci

RMRMRMRRR

kkkwkvkukR

 ,  ,  ,  ,  ,  

θ  , θ  , θ  ,   ,   ,    θθθ




 (6.22) 

 
(6) The above foundation deformations {δf} are applied at the column bases. The analysis is 
 performed on the frame of columns separately under the previous loads {R}. Then the 
 end reactions of columns {V} attached to the foundation are obtained. 
 
(7) The end reactions at the column bases {V} are applied to the foundation as external 
 loads. The analysis is performed on the foundation to obtain the deformations of the 
 foundations {δf} at the column base positions. 
 
The steps (4) to (7) have to be repeated until a sufficient compatibility of deformations between 
floor slabs and columns and between columns and foundation is reached at the connecting 
nodes. 
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6.4.2 Nonlinear mathematical soil model 
 
A mathematical model for raft foundation resting on nonlinear soil medium for Winkler’s model 
was presented by Baz (1987) and Hasneen (1993). This model is selected here for the analysis of 
foundation considering the effect of superstructure rigidity. In the mathematical model, the soil 
medium was represented by springs with nonlinear relation between the contact pressure of an 
individual spring and corresponding settlement. The model represents the nonlinear behavior of 
the contact pressure-settlement at the raft-soil interface by Equation 6.23 analogous to the 
hyperbolic function that represents the stress-strain relationship of the soil. 
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where qi [kN/m3] is the contact pressure at node i on the foundation, wi is the soil settlement at 
that node, kt [kN/m3] is the initial subgrade reaction and qult [kN/m2] is the ultimate bearing 
capacity of the soil. 
 
An extension for the above nonlinear soil medium for Winkler’s model is made in the procedure 
to represent the nonlinear behavior of foundation on Continuum model. In this case the initial 
subgrade reaction is variable from one node to the other and is obtained from the linear analysis 
of foundation on Continuum model, Equation 6.24. 
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where kti [kN/m3] is the initial subgrade reaction at node i, qli [kN/m2] and wli [m] are the linear 
contact pressure and soil settlement at that node respectively. 
Now the nonlinear behavior of the soil for both Winkler’s and Continuum models can be 
introduced in the previous iterative procedure as follows, Figure 6.5: 
 
˗ At iteration cycle (j) the nonlinear contact pressure qi at node i is  
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 where ksi is the modulus of subgrade reaction at node i, and equal to the initial subgrade 
 reaction kti at the first iteration cycle.  
 
˗ For the next iteration cycle (j+1) the modulus of subgrade reaction ksi is modified using 
 Equation 6.23 
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These steps have to be repeated until a specified tolerance ε between the nonlinear contact 
pressure qi calculated from iteration cycle (j) and that of the previous cycle (j-1) is reached. 
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Figure 6.5 Contact pressure-settlement diagram, linear and nonlinear analysis 

 

Settlement s

Ultimate bearing capacity qult

Linear analysis

kt Initial subgrade reaction

Nonlinear analysis

C
on

ta
ct

 p
re

ss
ur

e 
q 



Theory for the calculation of shallow foundations 
Chapter 6           Effect of Superstructure Rigidity on Foundation  
 

 6 - 18 

 
Example 6.1: Analysis of a raft for a high rise building 
 
1 Description of the problem 
 
This example was carried out to show the influence of flexure rigidity of the superstructure on 
the settlements, contact pressures for a raft of high rise building. 
 
It is required to analysis a raft for the building shown in Figure 6.6 in three simplified sections. 
The building is a reinforced concrete skeleton structure consists of a cellar and 13 storeys. The 
floor height is 3 [m] while the bay width is 3.6 [m]. The number of bays is 18. The total building 
length is 66 [m] while the total width of the cellar basement is 17.55 [m]. The raft thickness is 
1.2 [m]. In the following study the raft is analyzed considering subsoil behavior. Also, a 
simplification estimation of the superstructure deformations is carried out. In the analysis, 
settlements and contact pressures are determined in which a comparison is carried out in four 
cases as: 
 
 i) For not stiffened raft 
 ii) For compound system raft-cellar 
 iii) For compound system raft-cellar-superstructure 
 iv) For completely rigid raft 
 
The stiffness of the structure system parallel to the long axis can be determined from the data 
given in Figures 6.6 and 6.7. 
 
2 Soil properties 
 
According to Figure 6.7, the subsoil layers consist of a sandy clay layer until 11.6 [m] depth 
under the ground surface with modulus of compressibility Es = 14 000 [kN/m2]. Under the sandy 
clay layer exists in 11.60 [m] depth practically incompressible sandstone rock in great thickness. 
The settlement parts from the reloading of the soil are neglected. The foundation level under the 
original ground surface is 3.80 [m]. The modulus of compressibility method is used to analysis 
of the foundation. 
 
3 Material properties of concrete 
 
The building material is reinforced concrete and has the following properties: 
 
Young’s modulus  Eb = 2×107 [kN/m2] 
Poisson’s ratio  νb = 0.25  [-] 
Unit weight   γb = 0.0  [kN/m3] 
Unit weight of the concrete is chosen γb = 0.0 to neglect the self-weight of the structure. 
 
4 Loads 
 
According to static calculation of the open frame assuming rigid supports, each column from the 
twice 17 columns of the external walls has a column load of 2700 [kN] while each column of the 
twice 17 internal columns has a column load of 2500 [kN]. The column load for the four corner 
columns is 1350 [kN] while for the four edge columns is 1250 [kN]. The loads with FE-Net of 
the raft are shown in Figure 6.8. 
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Figure 6.6 Details of the building 
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Figure 6.7 Subsoil and dimensions of the raft, floors and columns (cross-section) 
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Figure 6.8 FE-Net of the raft with loads 
 
 
5 Analysis of the structure 
 
4.5.1 Analysis for not stiffened raft 
 
At first, the settlements and contact pressures are determined under the assumption that except 
for the stiffness of the raft itself  (thickness d = 1.2 [m]) no other rigidity is effective. So, the 
flexure rigidity of the raft KG can be obtained from: 
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The raft is flexible according to Table 6.1, (0.01 > Kst ). 
 
4.5.2  Analysis for the compound system raft-cellar 
 
From the assumption that the raft, the cellar walls and the cellar thickness represent combined 
flexure rigidity for the cross section, the cellar system with the raft must be connected rigidly 
through satisfied reinforcement. Considering the cross-section shown in Figure 6.7, the height xs 
of the center of gravity of the system cellar-raft is given by: 
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Then, the moment of inertia IG of the foundation system according to Steiner’s low is given by: 
 

2.75×24=66.00 [m]

P2 

P4P3

P1

P1 = 1250 [kN]
P2 = 2500 [kN]
P3 = 1350 [kN]
P4 = 2700 [kN]

P2

P4

2.
50

2.
50

2.
51

×
5=

12
.5

5

17
.5

5 
[m

] 



Theory for the calculation of shallow foundations 
Chapter 6           Effect of Superstructure Rigidity on Foundation  
 

 6 - 22 

       

    ][m 54.5244.24.07.15
12

4.070.15

44.02.15.0
12

2.15.0
 276.02.155.17

12

2.155.17

42
3

2
3

2
3





































GI

 

  
The rigidity of the structure KG is given by: 
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Then, the ideal raft thickness di is given by: 
 

][m 3.3
55.17

54.5212 12
33 




B

I
di  

 
and system rigidity Kst 
 

][- 1875.0
66

3.3
 

14000

101.2
  12

37
3





















fs

b
sst L

d

E

E
KK  

 
The raft is stiff according to Table 6.1, (0.2 > KSt ≥ 0.1). 
 
4.5.3  Analysis for the compound system raft-cellar-superstructure 
 
In this case the structure system is considered as a raft, caller and superstructure connected 
together as one unit. Here, the statical system of the structure may be taken as multi-storey open 
frame (13 storeys, 18 bays), which is statically indeterminate. The next calculation shows a 
simplification way to estimate the rigidity of the overall structure on the foundation. In the 
calculation, it is assumed that only the rigidity of the open panels is taken into consideration 
where the contribution of filling walls on the structure rigidity is neglected. 
 
The moment of inertia of the floor Ir 
 
According to Beton-Kalender (1957), page 47 or El Behairy (1992), page 17 the moment of 
inertia can be obtained from: 
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Average stiffness of the floor Kr 
 

][m 01053.0
6.3

0379.0 3
l

I
K r

r  

  
The moment of inertia of the columns Is 
 
The columns consist of two internal columns with cross-section of 0.5×0.5 [m] and two external 
columns with cross-section of 0.5×0.4 [m]. 
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Since all floors and columns are supposed to have similar cross-sections, the effective moment 
of inertia IB of the multi-storey open frame according to Meyerhof  (1953) can be given by: 
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Flexure rigidity of the superstructure KB 
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The raft is very stiff according Table 6.1, (1.0 > KSt ≥ 0.4). 
 
4.5.4 Analysis for completely rigid raft 
 
In this case both the superstructure and foundation are considered as an infinitely rigid structure. 
To determine the settlements and contact pressures in this extreme case, the modulus of 
compressibility method for the rigid raft is used. This method considers the raft is completely 
rigid. Rigid raft means a raft has a thickness of d = ∞ which also lead to a flexure rigidity of KG 
= ∞. 
 
Figures 6.9 and 6.10 show the settlements and contact pressures for the four cases of analyses. 
The settlements and contact pressures are determined with an ideal raft thickness di. 
Furthermore, the results of this example are represented in Table 6.3 in details, so that one can 
recognize the differences well. 
 
4.6 Conclusions 
 
This study shows that the results with and without the influence of the structure rigidity are 
different from one to other. Besides, the numerical example shows a way to how it can 
determine for more complicated structure systems the settlements and contact pressures taking 
into account the influence of the structure rigidity. 
 
Table 6.3 Results of structure rigidity for the four different cases of analyses 
 

Analysis 

Moment 
of inertia 

I 
[m4] 

flexure 
rigidity 
K = Eb I 
[kN/m3] 

ideal raft 
thickness 

di 
[m] 

System 
rigidity 

Kst 
[1] 

Grad of 
System 
rigidity 

Not stiffened 
raft 

2.53 5.31 × 107 1.20 0.009 
Flexible 

0.01 > Kst 

Compound 
system 

raft-cellar 

52.54 110.33 × 107 3.30 0.1875 
Stiff 

0.2 > KSt  0.1 

Compound 
system 

raft-cellar-
superstructure 

130.30 273.62 × 107 4.46 0.463 Very stiff  
1.0 > KSt  0.4 

Completely 
rigid raft 

∞ ∞ ∞ ∞ 
Rigid 

KSt  1.0 
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Figure 6.9 settlements s [m] in longitudinal direction at the middle of the structure 
 
 

 
 
Figure 6.10 Contact pressures q [kN/m2] in longitudinal direction at the middle of  
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Example 6.2: Verification of the iterative procedure 
 
1 Description of problem 
 
To verify the iterative procedure and evaluate its accuracy, a five-storey building resting on 
foundation through 36 columns is considered. The building is composed of five bays in both x- 
and y-directions, each bay is 5.0 [m] span. The height of the first storey is 4.0 [m] while the 
height of the other storeys is 3 [m]. The typical floor of the five storeys is chosen to be skew 
paneled beams as shown in Figure 6.11. The dimensions and loads of floor beams are shown in 
Table 6.4. The foundation is a grid type with 0.5 [m] thickness and 2.5 [m] breadth, Figure 6.12. 
The columns are square cross sections, the column models and dimensions for each storey are 
shown in Table 6.5. 
 
The building material is reinforced concrete and has the following properties: 
 
Young’s modulus Eb = 3×107 [kN/m2] 
Poisson’s ratio      νb = 0.15  [-] 
Shear modulus  Gb = 1.3×107 [kN/m2] 
 
The soil mass below the foundation is idealized as Winkler’s medium. The modulus of subgrade 
reaction of the soil ks is 40000 [kN/m3]. 
 
Table 6.4 Dimensions and loads of floor beams 
 

Beam type 
Dimensions 

Load [kN/m] 
Depth [m] Breadth [m] 

Exterior beam B1 0.50 0.25 15 

Interior beam B2 0.70 0.25 30 

 
Table 6.5 Column models and dimensions 
 

Storey 
Column dimensions [m×m] 

Model C1 Model C2 Model C3 

1st & 2nd storey 0.40 × 0.40 0.50 × 0.50 0.60 × 0.60 

3rd & 4th storey 0.30 × 0.30 0.40 × 0.40 0.50 × 0.50 

5th storey 0.25 × 0.25 0.30 × 0.30 0.40 × 0.40 
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Figure 6.11  Typical floor in plan 
 

 
 
Figure 6.12 Foundation plan with column models 
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Figure 6.13 Statical system of space frame with foundation on elastic springs 
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2  Analysis 
  
For the comparison between the results of building analysis using the proposed iterative 
procedure and that of traditional analysis without iteration, the building is modeled as a space 
frame supported by grid foundation resting on elastic springs. The element type for both the 
superstructure and foundation is a beam element as shown in Figure 6.13. 
 
For the calculation based on the traditional analysis without iteration, the structure is divided 
into 1120 space frame elements yielding 621 nodes. Each node has six degree of freedom. This 
generates 3726 simultaneous equations. For the calculation based on the proposed iterative 
procedure, the structure is divided into three parts; floors, space frame (columns) and foundation. 
The number of elements are 140, 180 and 240, yielding 81, 216 and 216 nodes for floor, space 
frame and foundation, respectively. Because the structure subjects to symmetrical vertical 
loading, the effect of horizontal loads will be ignored. Therefore the horizontal translations (u, 
w) and stresses for the floors and foundation are not considered in the analysis. 
 
For the calculation based on the traditional method, a three-dimensional space frame program is 
used to make the analysis of the structure. The horizontal translations and stresses in this case 
are ignored by assuming very small cross section areas for the floors and foundation elements. 
For the calculation based on the proposed iterative procedure, it is easy to use a two- or three-
dimensional program whenever it is applicable to make the analysis of each part of the structure 
separately. A two-dimensional grid program is used to make the analysis of floors or foundation 
in order to omit the horizontal translations and stresses, and a three-dimensional space program 
is used to make the analysis of columns. 
 
Due to symmetry in shape, dimensions, loading and supporting soil, it is possible to make the 
analysis for only one quarter of the structure. However, the analysis is carried out here for the 
whole structure, and the conditions of symmetry are used to check the results. 
 
3  Results and discussion 
 
To verify the proposed iterative procedure, the results of deformations at six selected points (a) 
to (f) on the foundation are compared in Table 6.6 with those obtained by the traditional method 
without iteration. 
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Table 6.6 Comparison of deformations at selected points on the foundation obtained  
  by iteration and those obtained by traditional method without iteration 
 

Point 
w [cm] θx [-] θy [-] 

With 
iteration 

Without 
iteration 

With 
iteration 

Without 
iteration 

With 
iteration 

Without 
iteration 

a 0.214 0.213 0.00043 0.00042 -0.00043 -0.00042 

b 0.229 0.229 0.00038 0.00037 0.00009 0.00008 

c 0.219 0.219 0.00036 0.00035 -0.00003 -0.00003 

d 0.308 0.308 -0.00011 -0.00009 0.00011 0.00009 

e 0.291 0.291 -0.00011 -0.00009 -0.00004 -0.00003 

f 0.269 0.270 0.00004 0.00004 -0.00004 -0.00004 

 
The maximum difference between the vertical translations of floor slabs and columns, and 
between those of columns and foundation at attached nodes is considered as an accuracy 
number.  
 

%][ 100 ε 






 


c

pc
w w

ww
 

 
where εw is the accuracy number for vertical translation in percentage, wc = vertical translation of 
column and wp is the vertical translation of floor or foundation. 
 
The accuracy number εw is 0.6 [%] for translation after four cycles. It can be concluded from the 
comparison that the results of the proposed iterative procedure are in good agreement with those 
obtained by the traditional method without iteration with accuracy εw = 0.6 [%] for the whole 
structure which yields maximum settlement error 0.47 [%] of the foundation. 
 
The computation time required for the iteration process used in Pentium 100 computer with 64 
MB RAM is 39 minutes, while that, required for solving the system of linear equations by the 
traditional method without iteration is 6.5 hours. The computation time required for solving the 
system of linear equations by the traditional analysis without iteration is 10 times more than 
required for the iteration process using the proposed iterative procedure for this example. 
Another analysis using the iterative procedure for the same example was carried out using a 
plate-beam element program for floors and foundation (see case example 4.2), indicated that the 
processing time was 43 minutes. That means, the long computation time for the traditional 
method is referred  to solving the overall matrix of the complete structure in one time, which 
normally, in this case, has large band width. 
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Example 6.3: Analysis of structure on nonlinear soil medium 
 
1 Description of problem 
 
An application of the proposed iterative procedure is carried out to study the behavior of 
foundation resting on nonlinear soil medium with considering influence of the superstructure 
rigidity. 
 
The previous example shown in Figures. 6.11 and 6.12 is also chosen here to show the analysis 
of structure on nonlinear soil medium with some modification to be a practical problem. 
 
The floor is chosen to be a slab of 22 [cm] thickness resting on skew paneled beams. The slab 
carries a uniform load of 11.8 [kN/m2]. Foundation is considered as a raft foundation with 
openings. The dimensions of paneled beams, columns and foundation are the same as those of 
the previous example. 
 
2 Soil properties 
 
Two different types of soil models are considered in this case-study: 
 

i) Winkler’s model that represents the subsoil by isolated springs. 
ii) Layered model that considers the subsoil continuum medium. 

 
The foundation is resting on a soil layer of 10 [m], overlying a rigid base. The soil types are 
represented by the modulus of elasticity, Es, for layered model that yields modulus of subgrade 
reaction, ks, for Winkler’s model. Table 6.7 shows two different soil types examined in this 
study according to the soil properties Es and ks. The two soil types are selected to represent weak 
and stiff soil. Poisson’s ratio is taken νs  = 0.3 for the two soil types. 
 
Table 6.7 Soil properties for two different soil types 
 

Type of soil ks [kN/m3] Es [kN/m2] qult [kN/m2] 

Weak soil 4000 18000 200 

Stiff soil 40000 180000 400 

 
3  Analysis 
 
To show the difference between the results of linear and nonlinear analyses with and without 
interaction of superstructure for the two cases of soil models, the foundation is analyzed for both  
the two soil types four times as follows: 
  
a) As a plate resting on linear soil medium without the effect of superstructure rigidity. 
b) As a plate resting on nonlinear soil medium without the effect of superstructure rigidity. 
c) As a plate resting on linear soil medium with the effect of superstructure rigidity. 
d) As a plate resting on nonlinear soil medium with the effect of superstructure rigidity. 
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The raft foundation is divided into 504 square elements. Each element has the dimension of 
1.25[m] ×1.25 [m]. The typical floor is divided into 100 square plate elements. Each has 
dimensions of 1.0 [m]×1.0 [m] to represent the floor slab. The plate elements are connected with 
140 beam elements to represent the skew paneled beams. 
For analyzing the foundation without interaction of the superstructure, the loads are obtained 
from floor reactions when analyzed as rested on fixed supports, Table 6.8. 
 
Table 6.8 Loads on foundation without interaction of superstructure 
 

Point a b c d e f 

Load [kN] 480 1085 975 3000 2630 2270 

 
The initial subgrade reactions kti for the continuum model are obtained from the linear analysis 
of foundation on Continuum model using Equation 6.24. For Winkler’s model, the initial 
subgrade reaction kt is the same as that of the modulus of subgrade reaction ks. 
 
Because of the symmetry of structure in shape, load geometry and supporting soil about x- and 
y-axis, only one quarter of the structure is considered in the analysis.  
 
4 Results and discussion 
 
Figures 6.14 to 6.25 show the distribution of settlement, contact pressure and moment at section 
I for 16 cases of analysis. In general, it can be noticed from those figures for both models and 
types of soil that: 
 
˗ The settlement values from nonlinear analysis with or without interaction of 
 superstructure are greater than those obtained from linear analysis at any node on the raft. 
 
˗ The nonlinear analysis redistributes the contact pressure by decreasing its values under 
 the columns and increasing the values at fields between columns. This makes the contact 
 pressure approaches to the average pressure on the raft, especially for weak soil. 
 
˗ According to the redistribution of the contact pressure on the raft due to nonlinear 
 analysis, the column moment is increased, while the field moment is decreased. 
 
˗ The maximum settlement, contact pressure and moment from the analysis with 
 interaction of superstructure are less than those from the analysis without interaction. 
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Figure 6.14 Settlement s [cm] at section I (Winkler’s model-weak soil) 
 

 
 
Figure 6.15 Contact pressure q [kN/m2] at section I (Winkler’s model-weak soil) 
 

 
 
Figure 6.16 Moment mx [kN.m/m] at section I (Winkler’s model-weak soil) 
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Figure 6.18 Contact pressure q [kN/m2] at section I (Winkler’s model-stiff soil) 
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Figure 6.17 Settlement s [cm] at section I (Winkler’s model-stiff 
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Figure 6.19 Moment mx [kN.m/m] at section I (Winkler’s model- stiff soil) 
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Figure 6.22 Moment mx [kN.m/m] at section I (layered model-weak soil)
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Figure 6.21 Contact pressure q [kN/m2] at section I (layered model-weak soil) 
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Figure 6.20 Settlement s [cm] at section I (layered model-weak soil) 
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Figure 6.25  Moment mx [kN.m/m] at section I (layered model- stiff soil)
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Figure 6.24  Contact pressure q [kN/m2] at section I (layered model-stiff soil) 
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Figure 6.23  Settlement s [cm] at section I (layered model-stiff soil)
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The following Tables 6.9 to 6.12 show the maximum settlement, contact pressure under the 
columns, column moments and its differences Δ. 

 
Table 6.9 Comparison of the maximum settlements max.s 
 

foundation- 
structure- 
interaction 

analysis of 
settlements 

settlements 

weak soil 
Es = 18000 [kN/m2] 

stiff soil 
Es = 180000 [kN/m2] 

Winkler’s
model 

Continuum
model 

Winkler’s 
model 

Continuum
model 

without 
interaction 

linear sln [cm] 3.27 3.51 0.45 0.44 

nonlinear snl [cm] 7.85 8.81 0.62 0.64 

Δ = 100 × (snl - sln) / sln [%] 140 151 38 46 

with 
interaction 

linear sln [cm] 3.15 3.50 0.41 0.42 

nonlinear snl [cm] 6.94 7.93 0.54 0.58 

Δ = 100 × (snl - sln) / sln [%] 120 126 32 38 

 
Table 6.10 Comparison of the soil pressure q under the column 
 

foundation- 
structure- 
interaction 

analysis of 
settlements 

Soil pressure

weak soil 
Es = 18000 [kN/m2] 

stiff soil 
Es = 180000 [kN/m2] 

Winkler’s 
model 

Continuum
model 

Winkler’s 
model 

Continuum
model 

without 
interaction 

linear qln [kN/m2] 131 126 182 310 

nonlinear qnl [kN/m2 ] 122 122 152 212 

Δ = 100×(qnl - qln) / qln [%] -7 -3 -17 -32 

with 
interaction 

Linear qln [kN/m2] 126 119 163 276 

nonlinear qnl [kN/m2] 115 114 139 196 

Δ = 100×(qnl - qln) / qln [%] -9 -4 -15 -29 
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Table 6.11 Comparison of the column moment mx 
 

foundation- 
structure- 
interaction 

analysis of 
settlements 

Column- 
moments 

weak soil 
Es = 18000 [kN/m2] 

stiff soil 
Es = 180000 [kN/m2] 

Winkler’s 
model 

Continuum
model 

Winkler’s 
model 

Continuum
model 

without 
interaction 

linear mln [kN.m/m] 725 742 609 557 

nonlinear mnl [kN.m/m] 812 836 638 613 

Δ = 100*(mnl - mln)/ mln [%] 12 13 5 10 

with 
interaction 

linear mln [kN.m/m] 554 558 528 490 

nonlinear mnl [kN.m/m] 587 596 538 517 

Δ = 100*(mnl - mln)/ mln [%] 6 7 2 6 

 
Table 6.12 Comparison of the field moment mx 
 

foundation- 
structure- 
interaction 

analysis of 
settlements 

Field- 
moments 

weak soil 
Es = 18000 [kN/m2] 

stiff soil 
Es = 180000 [kN/m2] 

Winkler’s
model 

Continuum
model 

Winkler’s 
model 

Continuum
model 

without 
interaction 

linear mln [kN.m/m] -184 -161 -162 -136 

nonlinear mnl [kN.m/m] 3.84 62 -178 -157 

Δ = 100×(mnl - mln)/ mln [%] 102 139 10 15 

with 
interaction 

linear mln [kN.m/m] -125 -104 -153 -128 

nonlinear mnl [kN.m/m] 22 74 -159 -138 

Δ = 100×(mnl - mln)/ mln [%] 118 171 4 9 

 
Besides the above notes, the following results are reported (results are written without brackets 
for Winkler’s model, while in brackets ( ) for Continuum model): 

 
Settlement (Table 6.9) 
 
The maximum nonlinear settlement for weak soil exceeds maximum linear settlement by 140 
[%] (151 [%]) and 120 [%] (126 [%]) for the analysis with and without interaction of 
superstructure, respectively, while for stiff soil by 38 [%] (46 [%]) and 32 [%] (38 [%]). 
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For both weak and stiff soil, the ratio between the maximum settlement from the analysis with 
interaction and that without interaction of superstructure is about 0.94 (0.97) for linear analysis, 
while this ratio decreases to 0.90 (0.90) for nonlinear analysis. 
 
Contact pressure (Table 6.10) 
 
The linear contact pressure for weak soil exceeds nonlinear contact pressure under the column 
by 8 [%] (4 [%]) for both analyzes with and without interaction of superstructure, while for stiff 
soil by 16 [%] (31 [%]). 
 
It is obvious that the contact pressure distribution patterns for Winkler’s model and Continuum 
model are not the same. The contact pressure under the columns for Continuum model are more 
than those of Winkler’s model by ratio of 1.7 for stiff soil. On the contrary to the case of stiff 
soil, this ratio is reduced to 0.95 for weak soil. 
 
Moments (Tables 6.11 and 6.12) 
 
For stiff soil, using either linear or nonlinear analysis the values of column moments are nearly 
the same. The difference between nonlinear and linear column moments does not exceed 5 [%] 
(10 [%]) and 2 [%] (6 [%]) for the analysis with and without interaction of superstructure 
respectively.  This difference is slightly increased for field moments to 10 [%] (15 [%]) and 4 
[%] (9 [%]). 
 
  
For weak soil, there is also no significant change between linear and nonlinear column moments. 
But for field moments the difference between nonlinear and linear is 102 [%] (139 [%]) and 118 
[%] (171 [%]) for the analysis with and without interaction of superstructure respectively. The 
results at section I also show that the field moment has changed from negative to positive at 
fields between columns due to the nonlinear analysis of the foundation. 
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7.1 Nonlinear analysis of foundations for simple assumption model 
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7.1.1 Introduction 
 
The simplest model for determination of the contact pressure under the foundation assumes a 
planar distribution of contact pressure on the bottom of the foundation (statically determined). In 
which the resultant of soil reactions coincides with the resultant of applied loads. If all contact 
pressures are compression, the foundation system will be considered as linear and the contact 
pressures in this case is given directly by the following well-known formula: 
 

i

xyyx

xyyyx
i

xyyx

xyxxy

f
i y

III

IMIM
x

III

IMIM

A

N
q  

 

  
 

 

  
22 







    (7.1) 

 
where: 
N Sum of vertical applied loads on the foundation    [kN] 
qi  Contact pressure at node i        [kN/m2] 
xi   Coordinate of node i from the centroidal axis x    [m]  
yi   Coordinate of node i from the centroidal axis y    [m] 
Af  Foundation area        [m2] 
Mx Moment due to N about the x-axis      [kN.m] 
My Moment due to N about the y-axis      [kN.m] 
Ix   Moment of inertia of the foundation area about the x-axis   [m4] 
Iy  Moment of inertia of the foundation area about the y-axis   [m4] 
Ixy  Product of inertia        [m4]  
 
If the foundation subjects to big eccentricity, there will be negative contact pressures on some 
nodes on the foundation. Since the soil cannot resist negative stress, the foundation system 
becomes nonlinear and a resolution must be carried out to find the nonlinear contact pressures. 
The nonlinear analysis of foundation for the simple assumption model has been treated by many 
authors since a long time, where several analytical and graphical methods were available for the 
solution of this problem. 
 
Pohl (1918) presented a table to determine the maximum corner pressure max qo for arbitrary 
positions of the resultant N. Hülsdünker (1964) developed a diagram using the numerical values 
of this table from Pohl (1918) to determine the maximum corner pressure max qo. For one corner 
detached footing, the closed form formulae cannot be used. Therefore, Pohl (1918) and Mohr 
(1918) proposed a method to estimate the neutral axis through the trial and error. Besides tables 
and diagrams, Graßhoff (1978) introduced also influence line charts can be used to determine 
the contact pressure ordinates.  
 
Peck/ Hanson/ Thornburn (1974) indicated a trial and error method to obtain the neutral axis 
position for rectangular footing subjected to moments about both axes. Jarquio/ Jarquio (1983) 
proposed a direct method of proportioning a rectangular footing area subjected to biaxial 
bending. Irles/ Irles (1994) presented an analytical solution for rectangular footings with biaxial 
bending, which will lead to obtain explicit solutions for the corner pressures and neutral axis 
location. 
 
 
 
The determination of the actual contact area and the maximum corner pressure max qo under 
eccentric loaded foundation with irregular shape is very important. For T-shape foundation that 
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is loaded eccentrically in the symmetry axis, Kirschbaum (1970) derived formulae to determine 
the maximum corner pressure max qo. For some foundation areas with polygonal boundaries, 
Dimitrov (1977) gave formulae to determine the foundation kern and corner pressure max qo. 
For the same purpose, Miklos (1964) developed diagrams. For general cases of foundation, 
Opladen (1958) presented graphical  procedure. 
 
Most of the analytical methods used to determine the contact area and corner pressures for 
eccentric loaded foundations are focused on regular foundations where irregular foundations can 
be analyzed only by graphical procedures. In this paper, an iteration procedure is presented to 
deal with nonlinear analysis of foundations for simple assumption model. The procedure can be 
applied for any arbitrary foundation shape and is suitable for computer programs. The following 
section describes this procedure. 
 
 
7.1.2  Description of the procedure 
 
In the procedure, the foundation is divided into rectangular finite elements. It is assumed that the 
contact pressure qi can be replaced by equivalent force Qi at the various nodal points. Consider 
the foundation shown in Figure 7.1 subjected to a big eccentricity. Then, the vector of contact 
pressures {Q}o obtained from the first analysis will contain some nodes with negative contact 
pressures. This vector can be rewritten in a form of separation vectors as: 
 

        o
n

o
p

o QQQ      (7.2) 

 
where: 
{Qp}(o)  Vector of positive contact pressures from the first analysis. 
{Qn}(o)  Vector of negative contact pressures from the first analysis.  
 
Now, instead of negative soil reactions {Qn}(o) on the separation zone, equivalent reactions 
{ΔQ}(o) over all foundation are to be found. This is achieved out in such a way that the resultant 
of soil reactions should equal and on the same line of action of the resultant of external loads. 
The iteration process to eliminate negative soil pressures for simple assumption model can be  
 
described in the following steps: 
 
 i-  A new set of loads on the foundation are assumed where the vector {Qn}(o) 
  represents these external applied loads at the same nodes. 
 
 ii-   Then, the vector {ΔQ}(o) can be determined as the new soil reactions due to these 
  applied loads using Equation 7.1. 
 
 iii-  The vector {ΔQ}(o) is added to the vector of positive contact pressures {Qp}(o) 
  to obtain the vector of redistributed contact pressures {Q}(1) as: 
 

        oo
p QQQ 1     (7.3) 

 
If new negative contact pressures appear, the above steps are repeated again until negative 
contact pressures no longer appear. Figure 7.1 shows the iteration cycle of the iteration process. 
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Figure 7.1 Iteration cycle of the iteration process 
7.2  Nonlinear analysis of foundations for Winkler's and Continuum models 
7.2.1 Introduction 
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If the foundation carries heavy loads, there will be contact pressures on some nodes on the 
foundation much higher than the ultimate bearing capacity of the soil qult. Since the soil cannot 
resist such high pressure, the foundation system becomes nonlinear and a resolution must be 
carried out to find the nonlinear contact pressures. The nonlinear analysis of this problem for 
Continuum model was recorded by many authors, for example Biedermann (1981) and Stark/ 
Majer (1988). These methods based on specifying the maximum permissible contact pressure q* 
in an iterative process during the analysis. The value of q* is usually expressed as a proportion of 
the average applied pressure qo on the foundation. Typically 2qo ≤ q* ≤ 3 qo in practical 
applications. The first step in the analysis is to define the nodes that remain “elastic” and that 
become “plastic” Because the contact pressures of plastic nodes exceed the specified limit q*, all 
the contact pressures in these nodes are reduced to q*. Then, the foundation is analyzed again to 
obtain the modified contact pressures on the elastic nodes. If the new results show that the 
specified maximum contact pressure is exceeded at further nodes, then the entire procedure is 
repeated until convergence is reached. 
  
A more realistic mathematical model for raft resting on nonlinear soil medium for Winkler’s 
model was presented by Baz (1987) and Hasnien (1993). In the mathematical model, the soil 
medium was represented by springs with nonlinear relation between the contact pressure of an 
individual spring and corresponding settlement. The model represents the nonlinear behavior of 
the contact pressure settlement at the raft soil interface by equation analogous to the hyperbolic 
function that represents the stress strain relationship of the soil. 
 
Kany/ El Gendy (2000) developed this model for the analysis of foundation taking the effect of 
superstructure rigidity into account. In which, an extension for the nonlinear soil medium for 
Winkler’s model is made to represent the nonlinear behavior of elastic foundation on Continuum 
medium. In this case, the initial subgrade reaction is variable from one node to other and is 
obtained from the linear analysis of elastic foundation on Continuum medium. 
 
In this study, a further extension for the above nonlinear soil medium for elastic foundation on 
Continuum medium is made to represent the nonlinear behavior of rigid foundation on 
Continuum medium. Also, an efficient method is presented to eliminate the negative contact 
pressures for elastic and rigid foundations on Continuum medium. 
 
 
7.2.2  Description of the procedure 
 
Elastoplastic analysis 
 
The nonlinear analysis (Elastoplastic) for both Winkler’s and Continuum models based on a 
hyperbolic relation between contact pressures qi and settlements si, which is given by: 
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      (7.4) 

 
where: 
qi Contact pressure at node   [kN/m2] 
si  Soil settlement at node i   [cm] 
kt  Initial subgrade reaction   [kN/m3] 
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qult  Ultimate bearing capacity of the soil  [kN/m2] 
 
The unknown parameters in Equation 7.4 are contact pressures qi and settlements si. The initial 
subgrade reaction kt for Winkler’s model is given for the problem and may be obtained directly 
from the elastic parameter of the soil. For either elastic or rigid foundation on Continuum 
medium, the initial subgrade reaction kt is variable over all nodes and is obtained from the linear 
analysis of the problem as: 

li

li
ti s

q
k        (7.5) 

 
wobei: 
kti  Initial subgrade reaction at node i    [kN/m3] 
sli   Soil settlement at node i from linear analysis  [m] 
qli   Contact pressure at node i from linear analysis [kN/m2] 
 
The ultimate bearing capacity of the soil qult in Equation 7.4 can be determined from Equation 
7.6 according to DIN 4017 (1979). 
 

bbddfccult NBNtNcq ν   γν   γν  21     (7.6) 

 
wobei: 
tf    Level of foundation under the ground surface  [m] 
   Angle of internal friction of the soil    [°] 
c   Cohesion of the soil      [kN/m2] 
γ1  Unit weight of the soil above the foundation level  [kN/m3] 
γ2   Unit weight of the soil under the foundation level  [kN/m3] 
B   Foundation width       [m] 
A   Foundation length      [m] 
Nc, Nd, Nb  Bearing capacity factors    [-] 

Nd = eπ  tan  tan2 (45 +  / 2) 
Nc = (Nd - 1) cot  
Nb = ( Nd - 1) tan  

νc, νd, νb Foundation shape factors    [-] 
νd = 1 + (B / A) sin  
νb = 1 - 0.3 (B / A) 
νc = (νd Nd - 1) / (Nd - 1) 

 
 
For multi-soil system consists of n layers under the foundation level (Figure 7.2), the mean 
values of the soil constants φm, cm and γm are determined by weighing the soil constant of the 
layer thickness hi from n layers, in which the mean average values are given by: 
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   (7.7) 

 

Here, a depth of the slide shape max Ts under the foundation dependent on φm is considered. 
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Therefore, an iteration process is necessary. The iteration is repeated until the difference 
between the angle of internal friction which is determined from the iteration cycle i and that of 
the pervious cycle i-1 is less than 0.1 [°]. According to DIN 4017 [17], the mean values of the 
soil constants are only accepted, if the internal friction for each individual layer φi does not 
exceed the  average value of the internal friction φav by 5 [°]. 
 

 
 
Figure 7.2 Ultimate bearing capacity for multi-layers system  
 
 
For subsoil defined by number of boring logs, an interpolation among the ultimate bearing 
capacities of the boring logs may be carried out to take into account the irregularity of the soil in 
x-and y-directions. 
 
Now the nonlinear behavior of the soil for both Winkler’s and Continuum models can be carried 
out as follows (Figure 7.3): 
 
˗ At an iteration cycle (j) the nonlinear contact pressure qi at node i is 
 

     j
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i skq        (7.8) 

 
 where ksi is the modulus of subgrade reaction at node i, and equal to the initial subgrade 
 reaction kti at the first iteration cycle 1.  
 
˗ For the next iteration cycle (j+1) the modulus of subgrade reaction ksi is modified using 

 Equation 7.9. 
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These steps have to be repeated until a specified tolerance ε between the nonlinear contact 
pressure qi calculated from an iteration cycle (j) and that of the previous cycle (j-1) is reached. 
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Figure 7.3 Nonlinear analysis procedure 
 
 
Foundation separation analysis 
 
In many cases for both elastic and elastoplastic analyses, the results of foundation on either 
Winkler’s medium or Continuum medium include negative contact pressures.  In practice, this 
means a separation between the foundation and the soil occurs. Therefore, it becomes necessary 
to continue the analysis to ensure that separation is allowed to occur, and that no contact 
pressures at the separation zone. 
 
For Winkler’s model, it is easy to eliminate the negative contact pressures by deleting the 
corresponding modulus of subgrade reaction ks at nodes that have negative pressures. Then, the 
analysis is repeated until negative contact pressures no longer appear. 
 
For elastic foundation on Continuum medium, Cheung/ Nag (1968) introduced an iterative 
procedure to eliminate the appropriate rows and columns in the flexibility matrix [c] and the 
solution is repeated using the modified stiffness matrix [ks] until all contact pressures are 
compressive or zero. Thus the problem remains elastic but becomes nonlinear, as the 
compressive contact pressures are unknown. El Gendy (1994) had applied the same procedure of 
Cheung/ Nag (1968) to rigid rafts on Continuum medium. 
 
In this study, an efficient alternative method to eliminate the negative contact pressures is 
presented. The treatment of raft separation for either elastic or rigid raft on Continuum medium 
is similar to elastoplastic analysis. From the first analysis of the raft, the stiffness of the soil may 
be represented by individual springs of variable stiffness ksi through the known contact pressures 
and corresponding settlements. Then, it is easy to eliminate the negative contact pressures by 
deleting the soil stiffness ksi at the separated nodes. Then, the analysis of the raft on individual 
springs is repeated until negative contact pressures no longer appear. 
As described before, in the nonlinear analysis (Elastoplastic and raft separation) for either elastic 
or rigid raft on Continuum medium, the subsoil on the nodes of the finite elements is represented 
by individual springs. Therefore, the system of linear equations in each iteration cycle is solved 
more efficiently as the soil stiffness matrix is a diagonal matrix, which in its original form is a 
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full matrix. The solution is iterative, but convergence is usually rapid. 
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Example 7.1 Verification of nonlinear analysis for Winkler’s model 
 
1 Description of the problem 
 
To verify the nonlinear analysis of the program ELPLA for Winkler’s soil model, the results of a 
square footing resting on elastic springs obtained through nonlinear analysis by Hasnien (1993) 
are compared with those obtained by the program ELPLA. 
 
A flexible square footing of 0.12 [m] thickness has the dimensions of 2 [m]×2 [m] was 
considered as shown in Figure 7.4. 
 

 
 
Figure 7.4 Footing geometry and loading 
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2 Soil properties 
 
The soil under the footing has modulus of subgrade reaction kst = 30000 [kN/m3] and ultimate 
bearing capacity qult = 600 [kN/m2]. 
 
3 Footing material 
 
The footing material has the following parameters: 
 
Young’s modulus Eb = 1.4 × 107  [kN/m2] 
Poisson’s ratio  b = 0.15  [-] 
Unit weight   γb = 25  [kN/m3] 
 
4 Analysis 
 
Two cases of loading are studied: 
 
 a) The footing carries a concentrated load of 1000 [kN] 
 b) The footing carries a uniform load of 250  [kN/m2] 
 
To study the soil settlements outside the footing borders due to nonlinear analysis, an imaginary 
surrounding elements of thickness 0.001 [m] are assumed to be around the footing.  The footing 
and surrounding elements were subdivided into 144 square elements, each element has 
dimensions of 0.25 [m] × 0.25 [m]. 
 
5 Comparison 
 
Tables 7.1 and 7.2 compare the results of settlements s, contact pressures q and moments mx at 
the center of the footing obtained by Hasnien (1993) with those obtained by ELPLA. From these 
table it can be seen that the results of both analyses are in good agreement. 
 
Table 7.1 Comparison of the results at the center of the footing obtained by Hasnien (1993) 
  with those obtained by ELPLA (The footing carries a concentrated load of 1000 
  [kN]) 
 

Item Type of analysis Hasnien (1993) ELPLA 

Settlement 
s [cm] 

Linear analysis 1.78 1.85 

Nonlinear analysis 2.55 2.58 

Contact 
pressure q 
[kN/m2] 

Linear analysis 535 556 

Nonlinear analysis 337 338 

Moment 
mx [kN.m/m] 

Linear analysis 213 272 

Nonlinear analysis 229 293 

 
 



Theory for the calculation of shallow foundations 
Chapter 7             Nonlinear Analysis of Foundations  
 

 7 - 12 

Table  7.2 Comparison of the results at the center of the footing obtained by Hasnien (1993) 
  with those obtained by ELPLA (The footing carries a uniform load of 250 
  [kN/m2]) 
 

Item Type of analysis Hasnien (1993) ELPLA 

Settlement 
s [cm] 

Linear analysis 0.78 0.81 

Nonlinear analysis 1.18 1.18 

Contact 
pressure q 
[kN/m2] 

Linear analysis 232 242 

Nonlinear analysis 222 223 

Moment 
mx [kN.m/m] 

Linear analysis 12 9 

Nonlinear analysis 13 12 
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Example 7.2 Rectangular foundation subjected to eccentric loading 
 
1 Description of the problem 
 
For comparison with complex foundation shape, no analytical solution is yet available. 
Therefore, for judgment on the  nonlinear analysis of foundations for simple assumption model, 
consider the rectangular foundation shown in Figure 7.5. The foundation has the length L = 8.0 
[m] and the width B = 6.0 [m]. The foundation carries an eccentric load of N = 2000 [kN]. Both 
of the x-axis and y-axis are main axes, which intersect in the center of gravity of the foundation 
area s. The position of resultant N is defined by the ordinates x = ex and y = ey. Within the 
rectangle foundation area five zones are represented. It is found that, the contact area and 
maximum corner pressure max qo depending on the position of the resultant N in these five 
zones (Irles/ Irles (1994)). In this example, the maximum corner pressure max qo is obtained 
using the program ELPLA for each zone and compared with other analytical salutations, which 
are available for rectangular foundation. 
 

 
 
Figure 7.5 Division of the rectangular foundation in five 
  zones according to the position of the resultant N 
 
 
2 Hand calculation of the maximum corner pressure max qo 
 
The maximum corner pressure max qo for the zone (1) can be obtained directly using Equation 
7.1, where in this case the Resultant N lies in the foundation kern and no separation will occur. 
The maximum corner pressure max qo for the other four zones can be obtained using available 
analytical solutions according Irles/ Irles (1994), Teng (1962) and Graßhoff/ Kany (1997) as 
follows: 
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Three corners detached (ex = 3.0 [m], ey = 2.25 [m]) 
 
The maximum corner pressure max qo for zone (2), Figure 7.6a, can be given according to Irles/ 
Irles (1994) from the following equation: 
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Zone (3) 
Two corners detached (ex = 3.0 [m], ey = 0.0 [m]) 
 
The maximum corner pressure max qo for zone (3), Figure 7.6b, can be given according to Teng 
(1962) from the following equation: 
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Zone (4) 
Two corners detached (ex = 1.0 [m], ey = 2.25 [m]) 
 
The maximum corner pressure max qo for zone (4), Figure 7.6c, can be given according to 
Graßhoff/ Kany (1997) from the following equation: 
 

][kN/m 58.323
141.10128

141.1028
 

0.2028

200012

 12

 2
 
β tan 

 12
 max

202.0
0.1141.10

.25226
 

2

3 2
 

2

3
βtan 

[m] 141.1012
0.1

8

0.1

8
 

12

8
12 

12

2
2222

2

2

2

2





























































tL

tL

L

N
q

et

eB

e

L

e

LL
t

o

x

x

xx

 

 
Zone (5) 
Only one corner detached (ex = 1.0 [m], ey = 0.75 [m]) 
 
The maximum corner pressure max qo for zone (5), Figure 7.6d, can be given according to 
Graßhoff/ Kany (1997) from the following equation: 
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Figure 7.6 Resultant N lies in the four zones (2) to (5) 
 
 
3 Determination of the maximum corner pressure max qo by the program ELPLA 
 
To achieve the comparison between the maximum corner pressure max qo obtained from the 
program ELPLA and that obtained from the other available analytical solutions described above, 
the rectangular foundation is subdivided into refine mesh of square finite elements. Each 
element has a side of 0.1 [m]. The results obtained from the program ELPLA are compared with 
those obtained above in Table 7.3. It shows that the results of both the analytical and iteration 
methods are in a good agreement. 
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  from program ELPLA and that obtained from the available analytical solutions. 
 

Zone No. Zone (2) Zone (3) Zone (4) Zone (5) 

Available 
solutions 

Irles/ Irles (1994) Teng (1962) Graßhoff/ Kany (1997) 

1000 222 324 107 

ELPLA 1017 223 325 106 

Difference [%] 1.67 0.45 0.31 0.94 

 



Theory for the calculation of shallow foundations 
Chapter 7             Nonlinear Analysis of Foundations  
 

 7 - 17 

Example 7.3 Circular foundation subjected to eccentric loading 
 
1 Description of the problem 
 
Another example is considered to show the applicability of nonlinear analysis of foundations 
using the program ELPLA for simple assumption model to different foundation types. The 
results of nonlinear analysis for a circular raft calculated by Teng (1962) are compared with 
those obtained by the program ELPLA. 
 
A circular raft of radius r = 5 [m] is considered as shown in Figure 7.7. The raft carries an 
eccentric load of N = 2000 [kN]. The position of the resultant N is defined by the ordinate e.  
 

  
Figure 7.7 Plan of the circular raft with dimensions and FE-Net 
 
 
2 Analysis 
2.1 Simple assumption model 
 
To carry out the comparison, the raft is subdivided into 1238 square elements. Each element has 
a side of 0.25 [m]. The contact pressures q under the middle of the raft are obtained in Figure 7.8 
at different ratios e/r, which shows also the separation zones. The ratio e/r ranges from 0.25 to 
0.75.  

N = 2000 [kN]

e

r = 5 [m]
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Figure 7.8 Contact pressures q [kN/m2] under the circular raft at different values of e/r  
 
 
The coefficient k = max qo π r2/N at different ratios e/r obtained from the program ELPLA are 
plotted and compared with those obtained by Teng (1962) in Figure 7.9. It can be concluded 
from this figure that the results of nonlinear analysis of the circular raft using the program 
ELPLA and those of Teng (1962) are in a good agreement. 
 

 
 
Figure 7.9 Coefficient k = max qo π r2/N at different ratios e/r 
 
 
 
 

300

200

100

0

0.0 2.0 4.0 8.0 10.

e/r = 

6.0

e/r = 0.70

e/r = 

x [m]

C
on

ta
ct

 p
re

ss
ur

e 
q 

[k
N

/m
2 ]

 

0

4

8

12

0.25 0.35 0.45 0.55 0.65 0.7

e/

ELPLA

Teng 

k 
=

 m
ax

 q
o 
π 

r2 
/ N

 



Theory for the calculation of shallow foundations 
Chapter 7             Nonlinear Analysis of Foundations  
 

 7 - 19 

2.2 Rigid raft on Continuum medium 
 
Although it is easy to drive closed form equations for raft separation in case of regular rafts for 
simple assumption model, but it is difficult to drive such equations for circular rigid rafts. For 
this reason, the same circular raft is analyzed again for rigid raft on Continuum medium to show 
the applicability of the nonlinear analysis of foundations using the program ELPLA for different 
soil models. The subsoil under the raft is chosen to be a layer of sand, which has the following 
parameters: 
 
Modulus of compressibility Es = 12 000 [kN/m2] 
Poisson’s ratio   s = 0.25 [-] 
Layer depth   z = 10  [m] 
 
The kern of the circular raft, in which no separation occurs when the resultant N lies in it, takes a 
radius r/4 in case of simple assumption model, while in case of rigid raft on Continuum medium 
takes a radius r/3. Therefore, the rigid raft is analyzed for different ratios e/r from 0.35 to 0.75. 
Figure 7.10 shows the contact pressures q under the raft at different values of e/r, while Figure 
7.11 shows the settlements s.  
 

 
 
Figure 7.10 Contact pressures q [kN/m2] under rigid circular raft at different values of e/r 
 
 
A comparison between Figure 7.8 and Figure 7.10 shows that the effective contact area for the 
raft in case of simple assumption model is less than that of rigid raft on Continuum medium at 
the same corresponding ratio e/r. The effective contact area and effective width may be used to 
determine the ultimate load for the foundation, which carries eccentric loading. Figure 7.11 
shows that the separation zones have upward settlements. 
 
The effective contact width c for the circular raft is given in a non-dimensional form in Figure 
7.12. Depending on the nature of the load eccentricity and the radius of the raft, once the 
magnitudes of the effective width and the effective area are determined, they can be used in 
Equation 7.6 to determine the ultimate load of the raft. 
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Figure 7.11 Settlements s [cm] under rigid circular raft at different values of e/r 
 
 

 
 
Figure 7.12 Diagram to determine the contact width c of the circular raft by eccentric loading 
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Example 7.4 Elastoplastic analysis of a raft resting on Continuum medium 
 
1 Description of the problem 
 
One of the difficulties by applying the Continuum model to practical problems is the appearance 
of the high contact pressures at the raft edges, especially when the raft carries heavy loads. The 
appearance of plastic zones at the raft edges related to the traditional mathematical soil models 
used in the analysis, which depend on the theory of elasticity. Therefore, an application example 
is carried out to show the applicability of the developed nonlinear analysis to redistribute the 
high contact pressures at the edges of both elastic and rigid rafts. 
 
A rectangular raft has the dimensions of 8×16 [m2] is chosen and subdivided into 512 square 
elements. Each element has a side of 0.5 [m] as shown in Figure 7.13. The raft carries a uniform 
load of 600 [kN/m2]. 
 

 
 
Figure 7.13 Raft geometry, loading and FE-Net 
 
 
2 Soil properties 
 
The raft rests on a homogeneous sand layer of thickness 10 [m], overlying a rigid base. The sand 
layer was supposed to have the following parameters: 
 
Modulus of compressibility   Es = 12 000 [kN/m2] 
Poisson’s ratio     s = 0.25 [-] 
Unit weight     γs = 17.5 [kN/m3] 
Angel of internal friction   φ = 27.5 [°] 

L = 32×0.5 = 16 [m]
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Cohesion     c = 0.0  [kN/m2] 
Foundation depth under the ground surface tf = 0.5  [m] 
 
3 Raft material and thickness 
 
The raft material and thickness were supposed to have the following parameters: 
 
Raft thickness  d = 0.5  [m] 
Young's modulus Eb = 3 × 107 [kN/m2] 
Poisson’s ratio  b = 0.15 [-] 
Unit weight  γb = 0.0 [kN/m3] 
 
Unit weight of the raft is chosen γb = 0.0 [kN/m3] to neglect the self-weight of the raft 
 
4 Analysis 
 
The nonlinear analysis of the raft was carried out for both elastic and rigid rafts on Continuum 
medium. Two cases concerning the ultimate bearing capacity qult are considered as follows: 
 
i) The ultimate bearing capacity qult is uniform. Its value is obtained from Equation 7.6, qult 

= 1603 [kN/m2]. 
 
ii) The ultimate bearing capacity qult is variable. The ultimate bearing capacity qult at the raft 

edges is determined from the second term of Equation 7.6, qult = γ1 tf Nd νd = 951 
[kN/m2], while the ultimate bearing capacity qult at the raft center is determined from 
Equation 7.6 when the third term is doubled, qult = γ1 tf Nd νd + 2 γ2 B Nb νb = 1753 
[kN/m2]. Figure 7.14 shows the contour lines of the variable ultimate bearing capacity 
qult. 

 

  
Figure 7.14 Contour lines of the variable ultimate bearing capacity qult [kN/m2] 
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Unfortunately until now, there is no available method to determine the bearing capacity of the 
soil for irregular contact pressure, where the bearing capacity equations are derived for a 
uniform contact pressure under the foundation. In this example, the variability of qult under the 
raft is chosen according to the principle of equilibrium forces acting on the raft and the soil at 
the failure. In which, the part of ultimate bearing capacity from the second terms in Equation 7.6 
is uniform. This part represents the influence of the applied pressure beside the foundation, γ1 tf 
Nd νd. The part of ultimate bearing capacity from the third term in Equation 7.6 has a triangle 
cross-section at the middle of the raft (Figure 7.15). This part represents the influence of the 
foundation geometry, γ2 B Nb νb. 
 

 
 
Figure 7.15 Ultimate bearing capacity at the soil failure (section a-a) 
 
 
5 Results and discussions
 
The contact pressures q at section a-a of the raft in case of uniform qult are shown in Figures 
7.16 and 7.17, while those in case of variable qult are shown in Figures 7.18 and 7.19. These 
figures show that, the linear analysis of the both elastic and rigid rafts gives high contact 
pressures at the raft edges. As it is expected due to the nonlinear analysis, the contact pressures 
shift from the edges to the center of the raft, and leads to loss of the bearing capacity. Figures 
7.16 and 7.17, which represent case of uniform qult show that although the contact pressures over 
all nodes on the raft are less than the ultimate bearing capacity limit, but the contact pressures at 
the raft edges still higher than those at the center. In contrast for case of variable qult the contact 
pressures take a form similar in shape to the limit line of qult  (Figures 7.18 and 7.19). 
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Figure 7.16 Contact pressures q [kN/m2] at section a-a with and without limitation 
  (Elastic raft - uniform ultimate bearing capacity) 
 

 
 
Figure 7.17 Contact pressures q [kN/m2] at section a-a with and without limitation 
  (Rigid raft - uniform ultimate bearing capacity) 
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Figure 7.18 Contact pressures q [kN/m2] at section a-a with and without limitation 
  (Elastic raft - variable ultimate bearing capacity) 

 
 

 
 
Figure 7.19 Contact pressures q [kN/m2] at section a-a with and without limitation 
  (Rigid raft - variable ultimate bearing capacity) 
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The effect of redistribution of contact pressures on the moments my at section a-a of the raft is 
indicated in Figure 7.20 for case of uniform qult and in Figure 7.21 for case of variable qult. The 
Figures show that due to the redistribution of the contact pressures under the raft, the moments are 
considerably changed. In case of variable qult, not only the moments are changed but also the sign of 
moments. In case of uniform qult, the maximum moment my is reduced to 81 [%], while that in case 
of variable qult is reduced to more than double. 
 

 
 
Figure 7.20 Moment my [kN.m/m] at section a-a with and without limitation  
  (Elastic raft - uniform ultimate bearing capacity) 
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Figure 7.21  Moment my [kN.m/m] at section a-a with and without limitation  
  (Elastic raft - variable ultimate bearing capacity) 
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8.1 Poisson’s ratio νs 
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Poisson’s ratio νs for a soil is defined as the ratio of lateral strain to longitudinal strain. It can be 
evaluated from the Triaxial test. Here, Poisson’s ratio νs can be determined from at-rest earth 
pressure coefficient Ko as follows: 
 

o

o
s K

K




1
ν      (8.1) 

 
Some typical values for the Poisson’s ratio are shown in Table 8.1 according to Bowles (1977). 
Poisson’s ratio in general ranges between 0 to 0.5. 
 
Table 8.1 Typical range of values for Poisson’s ratio νs according to Bowles (1977) 
 

Type of soil 
Poisson’s ratio 

νs [-] 

Clay, saturated  
Clay, unsaturated 
Sandy clay 
Silt 
Sand, dense 
Sand, coarse (void ratio = 0.4 - 0.7) 
Sand, fine grained (void ratio = 0.4 - 0.7) 
Rock 

0.4 - 0.5 
0.1 - 0.3 
0.2 - 0.3 
0.3 - 0.35 
0.2 - 0.4 

0.15 
0.25 

0.1 - 0.4 

 
 
8.2 Moduli of compressibility Es and Ws and unit weight of the soil γs 
 
The equations derived in chapter 1 for calculation of flexibility coefficients require either the moduli 
of compressibility for loading Es and reloading Ws or moduli of elasticity for loading E and 
reloading W for the soil. The yielding of the soil is described by these elastic moduli. The moduli of 
compressibility Es and Ws can be determined from the stress-strain curve through a confined 
compression test (for example Odometer test) as shown in Figure 8.1. In this case, the deformation 
will occur in the vertical direction only. Therefore, if the moduli of compressibility Es and Ws are 
determined from a confined compression test, Poisson’s ratio will be taken νs = 0.0. If the other 
moduli of elasticity E and W are used in the equations derived in chapter 1, poisson’s ratio will be 
taken to be νs  0. In general, Poisson’s ratio ranges in the limits 0 < νs < 0.5. 
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Figure 8.1 Stress-strain diagram from confined compression test (Oedometer test) 
 
 
The modulus of compressibility Es [kN/m2] (or Ws [kN/m2]) is defined as the ratio of the 
increase in stress Δσ to decrease in strain Δε as (Figure 8.1): 
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where: 
Δσʹ  Increase in stress from σv to σom   [kN/m2] 
σv  Stress equal to overburden pressure   [kN/m2] 
σom Stress equal to expected average stress on the soil [kN/m2] 
Δεʹ  Decrease in strain due to stress from σv to σom [-] 
Δσʹʹ  Increase in stress due to reloading   [kN/m2] 
Δεʹʹ  Decrease in strain due to reloading   [-] 
 
The moduli of compressibility may be expressed in terms of either void ratio or specimen thickness. 
For an increase in effective stress Δσ to decrease in void ratio Δe, the moduli of compressibility Es 
[kN/m2] and Ws [kN/m2] are then expressed as: 
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where: 
mʹv Coefficient of volume change for loading  [m2/kN] 
mʹʹv Coefficient of volume change for reloading  [m2/kN] 
eʹo  Initial void ratio for loading    [-] 
eʹʹo  Initial void ratio for reloading    [-] 
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Δeʹ Decrease in void ratio due to loading   [-] 
Δeʹʹ  Decrease in void ratio due to reloading  [-] 
 
The values of Es and Ws for a particular soil are not constant but depend on the stress range over 
which they are calculated. Therefore, for linear analysis it is recommended to determine the 
modulus of compressibility for loading Es at the stress range from σv to σom, while that for 
reloading Ws for a stress increment equal to the overburden pressure σv. In the other hand, since 
the modulus of compressibility increases with the depth of the soil, for more accurate analysis 
the modulus of compressibility maybe taken increasing linearly with depth. Also, according to 
Kany (1976) the moduli of compressibility Es and Ws maybe taken depending on the stress on 
soil. In these two cases, the moduli of compressibility Es and Ws can be defined in the analysis 
for several sub-layers instead of one layer of constants Es and Ws. 
 
As a rule, before the analysis the soil properties are defined through the tests of soil mechanics, 
particularly the moduli of compressibility Es and Ws. For pre calculations Table 8.2 for 
specification of the modulus of compressibility Es can also be used. 
 
According to Kany (1974), the values of Ws range between 3 to 10 times of Es. From experience, 
the modulus of compressibility Ws for reloading can be taken 1.5 to 5 times as the modulus of 
compressibility Es for loading. 
 
For geologically strongly pre-loaded soil, the calculation is often carried out only with the 
modulus of compressibility for reloading Ws. In this case, the same values are defined for Es and 
Ws. 
 
Matching with the reality, satisfactory calculations of the settlements are to be expected only if 
the soil properties are determined exactly from the soil mechanical laboratory, field tests or back 
calculation of settlement measurements. 
 
Table 8.2 shows mean moduli of compressibility Es and the unit weight of the soil γs for various 
types of soil according to EAU (1990).  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Table 8.2 Mean moduli of compressibility Es and the unit weight of the soil γs for various
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  types of soil 
 

Type of soil 

Unit weight 
γs  [kN/m3] Modulus of 

compressibility 
Es  [kN/m2] above 

water 
under 
water 

 
Non-cohesive soil 
Sand, loose, round 
Sand, loose, angular 
Sand, medium dense, round 
Sand, medium dense, angular 
Gravel without sand 
Coarse gravel, sharp edge 

18 
18 
19 
19 
16 
18 

10 
10 
11 
11 
10 
11 

20000 - 50000 
40000 - 80000 
50000 - 100000 
80000 - 150000 
100000 - 200000 
150000 - 300000 

 
Cohesive soil 
Clay, semi-firm 
Clay, stiff 
Clay, soft 
Boulder clay, solid 
Loam, semi-firm 
Loam, soft 
Silt 

 
19 
18 
17 
22 
21 
19 
18 

 
9 
8 
7 
12 
11 
9 
8 

 
5000 - 10000 
2500 - 5000 
1000 - 2500 

30000 - 100000 
5000 - 20000 
4000 - 8000 
3000 - 10000 

 
 
8.3 Moduli of elasticity E and W  
 
In the program ELPLA, the equations derived in chapter 1 to determine the flexibility 
coefficients are used with moduli of elasticity E and W for unconfined lateral strain with 
Poisson’s ratio νs  0. It must be pointed out that, when defining Poisson’s ratio by νs = 0 (limit 
case), the moduli of compressibility Es and Ws for confined lateral strain (for example from 
Odometer test) also can be used. 
 
The modulus of elasticity is often determined from an unconfined Triaxial compression test, 
Figure 8.2. Plate loading tests may also be used to determine the in situ modulus of elasticity of 
the soil as elastic and isotropic. 
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Figure 8.2 Modulus of elasticity E from Triaxial test 
 
 
It is possible to obtain an expression for the moduli of elasticity E and W in terms of moduli of 
compressibility Es, Ws and Poisson’s ratio νs for the soil as: 
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Equation 8.4 shows that: 
 
˗ In the limit case νs = 0 (deformation without lateral strain), the values of  E and Es (also 

 W and Ws) are equal 
 
˗ In the other limit case νs = 0.5 (deformation with constant volume), the moduli of 

 elasticity will be E = 0 × Es and W = 0 × Ws. In this case, only the immediate settlement 
 (lateral deformation with constant volume) can be determined. By the other way, the 
 second term in Steinbrenner’s formula (1.51) will be omitted, if Poisson’s ratio νs = 0.5 
 is used 

 
Table 8.3 shows some typical values of modulus of elasticity according to Bowles (1977). 
 
 
 
 
 
 
 
 

ε 

Δσma

Axial strain ε = Δh/h [%]

E=Δσ/ε
σ

Δ

Δ

h
σ

Δσ

σ

σ

Δ
σ 

=
 

S
tr

es
s 
σ 

[k
N

/m
2 ]

 



Theory for the calculation of shallow foundations 
Chapter 8                Soil Properties  
 

 8 - 7 

Table 8.3 Typical range of moduli of elasticity E for selected soils 
 

Type of soil 
Modulus of elasticity 

E [kN/m2] 
 
Very soft clay 
Soft clay 
Medium clay 
Hard clay  
Sandy clay 
Silt 
Silty sand 
Loose sand 
Dense sand 
Dense sand and gravel 
Loose sand and gravel 
Shale 

3000 -       3000 
2000  -       4000 
4500 -       9000 
7000 -     20000 

          30000 -     42500 
2000  -     20000 
5000 -     20000 

          10000 -     25000 
          50000 -   100000 
          80000 -   200000 
          50000 -   140000 
        140000 - 1400000 

 
 
8.4 Compression index Cr und initial void ratio eo 
 
In case of clayey soil it is recommended to use the settlement parameters Cc, Cr and Cs to 
represent the elastic properties of the soil in the computation of consolidation settlements. These 
parameters or indices can be obtained directly from the consolidation test or indirect using some 
empirical equations such as Equations 8.7 and 8.8. 
 
Compression index Cc from consolidation test 
 
The typical relationship between the void ratio e and effective stress σ obtained from the 
consolidation test is shown in Figure 8.3. The slope of the end part of the e versus log σ curve is 
denoted as the Compression index Cc and computed as: 
 

1

2

σ

σ
 log

Δe
Cc        (8.5) 

 
By analogy, the other indices Cr and Cs can be obtained as shown in Figure 8.3 and Equation 
8.6: 
 

i

cr

e
CC

σ

σ
 log

Δ
or    

2

      (8.6) 

where: 
Cr  Recompression index    [-] 
Cs  Swell index     [-] 
Δe Change in void ratio between σi and σ2 [-] 
σi Any pressure along the appropriate curve [kN/m2] 
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Figure 8.3 Relationship between void ratio and effective stress obtained from consolidation test 
 
 
Compression index Cc from empirical equations 
 
Because of the number of consolidation tests to obtain the compression indices for a given 
project are limited, it is often desirable to obtain approximate values by using other soil 
parameters which are more easily determined. Approximate values may be used for preliminary 
calculations or to check the laboratory data.  
 
For normally consolidated clays Terzaghi/ Peck (1967), on the basis of research on undisturbed 
clays, proposed the following equation to obtain the Compression index Cc [-] from the liquid 
limit of the soil LL [%]: 
 

)10( 009.0  LLCc      (8.7) 

 
Azzouz (1976) lists several equations to obtain the compression index, one of them is given 
below to obtain the Compression index Cc [-] from the initial void ratio eo [-] of the soil: 
  

)35.0( 15.1  oc eC      (8.8) 

 
Typical values of compression and swell indices as well as the corresponding void ratio at stress 
σo = 10 [kN/m2] are presented in the following table according to Gudehus (1981). The 
compression index Cc is valid for loading while Cs is valid for both heaving and reloading. 
 
 
 
 

 

Cc

Effective stress σ  

Cr

Cs

1
1

1

vo
id

 r
at

io
 e

  [
-
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Table 8.4 Compression and swell indices depending on the initial void ratio 
 

Soil type 
Compression index 

Cc [-] 
Swell index 

Cs [-] 
Initial void ratio 

eo [-] 
 
Gravely sand 
Fine sand, dense 
Fine sand, loose 
Coarse silt 
Clayey silt 
Kaolin-Silt 
Schlick 
Clay 
Peat 

 
0.001 
0.005 
0.01 
0.02 

0.03-0.6 
0.1 

0.1-0.3 
0.5 
1 

0.0001 
0.0005 
0.001 
0.002 

0.01-0.02 
0.03 

0.03-0.1 
0.4 
0.3 

0.3 
0.5 
0.7 
0.8 

0.9-1.2 
1.5 

1.2-2.5 
5 
10 

 
 
8.5 Shear parameters φ and c 
 
Angle of internal friction φ and cohesion c are physical soil properties for determining bearing 
capacity of the soil, they are called also shear parameters. The shear parameters φ and c can be 
obtained from shear test or Triaxial test. They are  usually obtained for a certain soil by carrying 
out three shear tests with different stresses. The results of such series can be plotted as points in 
τf-σ diagram as shown in Figure 8.4. 
 

 
 
Figure 8.4 Shear strength at variable normal stress 
 
 
For many soil types, the points lie quite exactly in a straight line. The intersection of the line 
with y-axis gives the value of cohesion c, while the inclination of the line gives the angle of 
internal friction φ. The straight line Equation 8.9 is called Coulomb’s friction law for shear 
strength. 
 

φtan  στ  cf      (8.9) 

Normal stress σ  [kN/m2]

φ

S
he

ar
 s

tr
en

gt
h 
τ f

  [
kN

/m
2 ]

 

c 
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As known from the pore water pressure u that when the effective stress σʹ = σ -u is used instead 
of the normal stress σ, Equation 8.9 becomes: 
 

φtan  στ  cf      (8.10) 

 
where: 
cʹ Effective cohesion   [kN/m2] 
φʹ Effective angle of internal friction [°] 
 
When the pore excess water pressure cannot drain, at least quickly, from the soil sample in the 
shear test, undrained condition occurs. 
 

uuf c φ στ        (8.11) 

 
where: 
cu Undrained cohesion    [kN/m2] 
φu Undrained angle of shearing resistance [°] 
 
In a fully saturated soil φu = 0. 
 
You can write the shear parameters without the index u, if it is clear that the ultimate bearing 
capacity of the saturated soil is being without volume changes. The ultimate bearing capacity of 
the soil is often determined without considering the pore water pressure according to Figure 8.4 
and Equation 8.9. Mean average values of the angle of internal friction φ and cohesion c for 
various types of soil are listed  in Table 8.5 according to EAU (1990). These values are used 
only for preliminary calculation. 
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Table 8.5 Mean average values of shear parameters according to EAU (1990) 
 

Type of soil 

Angle of 
internal 
friction 
φ or φʹ 

[°] 

Cohesion 

cʹ  
[kN/m2] 

cu 
[kN/m2] 

 
Non-cohesive soil 
Sand, loose, round 
Sand, loose, angular 
Sand, medium dense, round 
Sand, medium dense, angular 
Gravel without sand 
Coarse gravel, sharp edge 

 
30 

32.5 
32.5 
35 

37.5 
40 

 
- 
- 
- 
- 
- 
- 

 
 
- 
- 
- 
- 
- 
- 

 
Cohesive soil 
Clay, semi-firm 
Clay, stiff 
Clay, soft 
Boulder clay, solid 
Loam, semi-firm 
Loam, soft 
Silt 
Peat 

 
25 
20 

17.5 
30 

27.5 
27.5 
27.5 
15 

 
25 
20 
10 
25 
10 
- 
- 
5 

 
50 - 100 
25 - 50 
10 - 25 

200 - 700 
50 - 100 
10 - 25 
10 - 50 

- 

Explanations about Table 8.5 
 
φ Actual angel of internal friction 
φʹ Effective angle of internal friction; for non-cohesive soil is φ = φʹ 
cʹ Effective cohesion referred to φʹ 
cu Undrained apparent cohesion at zero friction for a saturated cohesive soil 
 
 
8.6 Modulus of subgrade reaction ks 
 
It is important to say that the modulus of subgrade reaction ks is not a soil constant, but it can be 
related to the elastic parameters Es and νs of the soil.   
  
It may be determined from in situ plate loading test. This test is generally performed using a 
circular steel plate (30 in diameter) thick enough so that the bottom plate will settle uniformly 
under a vertical load. The modulus of subgrade reaction ks [kN/m3] is defined as the ratio 
between the soil pressure q [kN/m2] and corresponding settlement s [m], Equation 8.12. 
 

s

q
ks        (8.12) 

 
In practice the plate would not stress the same soil strata as the full size foundation. Therefore, 
the result from a plate loading test may give quite misleading results if the proposed foundation 
is very big. The soft layer of soil in Figure 8.5 is unaffected by the plate loading test but would 
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be considerably stressed by the foundation. Therefore, it is recommended to evaluate the 
modulus ks from the elastic parameters Es and νs of the soil. 
 

  
Figure 8.5 Illustration of how a plate loading test may give misleading results 
 
 
A reasonable approximation of modulus of subgrade reaction ks can be obtained from the 
allowable soil pressure qall according to Bowles (1977). This way is presented on the assumption 
that the allowable soil pressure is based on some maximum amount of settlement s, including a 
factor of safety FS. Accordingly, the modulus of subgrade reaction ks is given by: 
 

S

q
SFk all

s          (8.13) 

 
The modulus of subgrade reaction ks [kN/m3] for a settlement of s = 0.0254 [m] equal to s = 1.0 
[m] and a factor of safety FS = 3 can be taken as: 
 

all
all

s q
q

k  120
0254.0

 3      (8.14) 

 
In case of carrying out the analysis with constant modulus of subgrade reaction, it is 
recommended to determine the modulus of subgrade reaction from settlement calculation. More 
complicated analysis for irregular foundation on variable moduli of subgrade reactions is 
available in the program ELPLA. Furthermore, the moduli of subgrade reactions can be 
improved through the calculated contact pressures and settlements by iteration. 
 
The following Table 8.6 shows the approximate average values of ks according to Wölfer (1978). 
These values may be used only for primary calculation. 
 
 
 
 
Table 8.6 Typical average values of moduli of subgrade reactions ks for selected soils 

  Full size foundation

Rigid base

Bulb of 
Firm soil

Plate loading 

Soft layer
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Type of soil Modulus of subgrade reaction 
ks [kN/m3] 

 
Peat 
Fill of sand and gravel 
Wet clayey soil 
Moistured clay 
Dry clay 
Hard dry clay 
Coarse sand 
Coarse sand + small amount of gravel 
Fine gravel + small amount of gravel 
Middle size gravel + fine sand 
Middle size gravel + coarse sand 
Large size gravel + coarse sand 

5000 - 10000 
10000 - 20000 
20000 - 30000 
40000 - 50000 
60000 - 80000 

100000 
80000 - 100000 
80000 - 100000 
80000 - 100000 
100000 - 120000 
120000 - 150000 
150000 - 200000 

 
 
8.7 Allowable bearing capacity of the soil qall 
 
The value of allowable bearing capacity of the soil is based on theoretical as well as 
experimental investigation. Such a value usually includes a factor of safety of 3 (qult = 3 qall). 
This indicates that the design loads used in establishing the bearing capacity area of the 
foundation must be service loads with no reduction. 
 
Approximate allowable bearing capacity qall of common types of soils are listed in Table 8.7 
according to Bakhoum (1986) and can be taken for primary calculations. 
 
 
 
Table 8.7 Approximate allowable bearing capacity qult of common types of soils 
 

Type of soil 
Allowable bearing capacity 

qall  [kN/m2] 
 
Noncohesive soil 
Loose sand 
Medium sand 
Dense sand 
Hard rock 

 
100 
200 
500 
5000 

 
Cohesive soil 
Soft-medium clay 
Stiff clay 
Very stiff clay 
Hard clay 

 
90 
150 
300 
500 

 
8.8 Settlement reduction factor α 
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As according to experience the real consolidation settlements are different from those calculated, 
the settlements s are multiplied by a factor α according to German standard DIN 4019, page No. 
1. According to this standard the following reduction factors in Table 8.8 can be applied: 
 
Table 8.8 Reduction factors α  according to DIN 4019, page No. 1 
 

soil type  

Sand and silt 0.66 

Normally and slightly over consolidated clay 1.0 

Heavily over consolidated clay 0.5 - 1 

 
In the program ELPLA, the moduli of compressibility Es and Ws are divided by α as follows: 
 













α

α
s

s

s
s

W
W

E
E

     (8.15) 

 
In the final result, this process is equivalent to the following Equation 8.16: 
 

SS  α      (8.16) 
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9.1 Introduction 
 
When ordering package ELPLA, a CD is delivered. It contains the programs and 20 project data files 
for test purposes, which were described in this book. These data introduce some possibilities to ana-
lyze slab foundations by ELPLA. 
 
Firstly, the numerical examples were carried out completely to show the influence of different sub-
soil models on the results. Furthermore, different calculation methods for the same subsoil model 
are applied to judge the computation basis and the accuracy of results. In some cases the influences 
of geological reloading, soil layers and also the structure rigidity are considered in the analysis. 
 
For this purpose, the following numerical examples introduce some possibilities to analyze founda-
tions. Many different foundations are chosen, which are considered as some practical cases may be 
happened in practice. All analyses of foundations were carried out by ELPLA, which was developed 
by Kany/ El Gendy. 
 
In the next pages, names of files of the numerical examples, content and short description of the 
examples are listed. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
9.2 Examples of chapter 2 
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 Part B: Theory used in the formulation of ELPLA 
 
Example 2.1: A square raft on irregular subsoil 
 
 
File name Content 
 
un1  Modulus of subgrade reaction- method 3 (Interpolation) 
un2  Layered soil medium (elastic raft)-method 6 (Interpolation) 
un3  Layered soil medium (rigid raft)-method 8 (Interpolation) 
 
un4  Modulus of subgrade reaction- method 3 (Subareas method) 
un5  Layered soil medium (elastic raft)-method 6 (Subareas method) 
un6  Layered soil medium (rigid raft)-method 8 (Subareas method) 
 
un7  Modulus of subgrade reaction- method 3 (regular layer) 
un8  Layered soil medium (elastic raft)-method 6 (regular layer) 
un9  Layered soil medium (rigid raft)-method 8 (regular layer) 

 

 
 

 
Example 2.2: An irregular raft on irregular subsoil 
 

a A=12×0.83 =10.00 

500 500 

500 500 

1 2 3 1

1 1 1 2

7 8 8 9

16
15 15 15

z = 10.0 

Compressible layer

Rigid 

d = 0.4 [m]

b

A
=

12
×

0.
83

 =
10

.0
0 

m
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File name Content 
 
gb1  Linear contact pressure -method 1 
gb2  Constant modulus of subgrade reaction-method 2 
gb3  Variable modulus of subgrade reaction-method 3 
gb4  Modification of modulus of subgrade reaction by iteration-method 4 
gb5  Isotopic elastic half-space soil medium-method 5 
gb6  Layered soil medium by iteration (elastic raft)-method 6 
gb7  Layered soil medium by elimination (elastic raft)-method 7 
gb8  Layered soil medium (rigid raft)-method 8 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
Example 2.3: System of footings on irregular subsoil 
 
 

800

1538

1565

1350

1368

1254

1600120

1265

500

1560

350 

750
89

2150
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2.0

x [m]10.8.06.4.02.0

12.

10.

8.0

6.0

4.0

0. 12.

y [m]

B

(9
(8)

(7

(6(5)(4

(3(2(1

B

B

B
2700

2000

300

250
540

95

8090

270

250

(11.00)
(12.00

(1.30)

San

(40.00

(0.00

Sil

a

b

File name  Content 
 
foi   Footing i (i = 1 to 9) 
Group   Group of footings 
 
Dir: Interpolation Analysis with limit depth using interpolation 
Dir: LdrFooting3 Analysis with limit depth related to footing 3 
Dir: LdrFooting5 Analysis with limit depth related to footing 5 
Dir: Without LD Analysis without limit depth 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

9.3 Examples of chapter 3 
 Part B: Theory used in the formulation of ELPLA 
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II

1265 1560 800

1600

1350

1368 1538 1568 1254 

1450

750 2150 

1. 1. 1. 1. 1. 1. 1.4 1.4
5

1.1. 1.

I

IIIs s 

(8.0, 8.0)

X 

y

0.7 

x
’

8.0 15.0 m 6.0 

(0.0, 0.0)

Y

b) 

a)

8.
0 

m
14

.0
 m

6.
0 

m

1.
1.

1.
1.

1.
1.

1. 5  
1.

3
1.

3
1.

Example 3.1: Settlements outside the foundation 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Example 3.2: Influence of a new neighboring building on an old one 
 

 
File name Content 

 
File name Content 

se1             Contact area I 
se2             Contact areas II+III 
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14 × 0.72 = 10.08 14 × 0.72 = 10.08 
b) 

P1 = 500   [kN]
P2 = 1000 
P3 = 2000 

P1

P P  

P1PP P

PPP

PP

P

P

P P2

P2

P  P

New building II Old building I

a a

a) Section a-a Rock

(0.00

Es = 5000    [kN/m2] 
Ws = 15000 [kN/m2] 
γs  = 18       [kN/ m3]

Eb = 2×107 [kN/m2]
νb  = 0.15   [-] 
γb  = 0.0     [kN/ m3]

P P P2 P P P 

(7.20

(1.50

Clay, stiff plastic

d =1.0 m

14
 ×

 0
.7

2 
=

 1
0.

08
 

 
ei1  Only new building 
ei2  New building + Old building 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Example 3.3: Influence of ground lowering due to a tunnel on a building 
 
 
File name Content 
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p

P P

y

x

21.0 

B3 (20.5, 

B2 (17.0, 

B1 (2.0, 

a
24.

0.

12.

8.

4.

20.16.10.06.0.0

T, Clay
Es = 10000  [kN/m2]
Ws = 30000 [kN/m2]
γs  = 18       [kN/ m3]

B
(14.00

GW 

(7.00
(6.30

(5.50)

(0.00

Sst, Sandstone
Es = 160000  [kN/m2]
Ws = 400000 [kN/m2]
γs  = 21          [kN/ m3]

BB

b

P = 18000 
p = 300 kN/m]

13
.5

 [
m

] 

tu1  Without tunnel 
tu2  With tunnel 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

9.4 Examples of chapter 4 
 Part B: Theory used in the formulation of ELPLA 
 
Example 4.1: Interaction of two circular rafts 
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File name Content 
 
ha1  Circular raft I 
ha2  Circular raft II 
h12  Circular raft I + Circular raft II       

 

 
 
Example 4.2: Settlement behavior of four containers 
 
 
File name Content 
 
sta  Circular raft A 
stb  Circular raft B 
stc  Circular raft C 
std  Circular raft D 
ste  Analysis of system of rigid circular rafts A+B 

 

 

 

 

 

 

 

 

Example 4.3: Interaction of two rafts considering two additional footings 
 
 
File name Content 
 
sf1  Footing III 

GW Sand + Gravel  
Es = 15 000 [kN/m2]

Silt + Clay 
Es = 15 000 [kN/m2]

327.00

F = 263 [m2] 
p = 352 [kN/m 2]

332.00 u. NN.A B
55

4 4

3 31 1

31.00

2 2

b)

DC

a)

29
.0

0 
[m

] 18
.3

0 
[m

]
15

.3
 [

m
]

3
6

Raft Raft 

P1 =1250 
P2 =1000 

a aPP1

P2 P2 

y

x
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16

16

15.0 

18 20 2422 X 14

4.

2.

2.

10

12

14

16

18

20

Y 

8

I

II

I

I

4138

37

33

2926

30

34 36

27

31

35

39

28

43

40

32

42

252422 2321

1211

20191817

5

151413

4321

109876

8.

2.

1. 1.2.2.

2.

3.
3.

1.

3.3. 3.
3. 3.3.

3.

3.
3.

3.
3.

3.
3.

3.
1.

5 

12
.

2.

3.

1.
5  

1.
5 

2.
0

2.
2.

0  
2.

0
2.

1.
0 

1.
0.

8.
0

sf2  Footing IV 
 
fl1  Flexible raft I 
fl2  Flexible raft II 
f12  Analysis of system of flexible rafts I+II    
 
el1  Elastic raft I 
el2  Elastic raft II 
e12  Analysis of system of elastic rafts I+II + II 
 
rg1  Rigid raft I 
rg2  Rigid raft II 
r12  Analysis of system of rigid rafts I+II 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

 

 

 

 

 

 

 

 

 

 

 

Example 4.4: Interaction of two square rafts constructed side by side 
 
 
File name  Content 
 
Rf1_sys  Raft system (raft I) 
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Rf2_sys  Raft system (raft II) 
Rf1_2_sys  Raft system (rafts I + II) 
Rf1   Without interaction (raft I) 
Rf2   Without interaction (raft II) 
Rf1_2_*cm  Case 1: (c = *cm) 
Rf1_Nachbar_*cm Case 2: raft I (c = *cm) 
Rf2_Nachbar_*cm Case 2: raft II (c = *cm) 
Rf1_2   Case 3 
Rf1_2_Fugen  Case 4 

 

 
 

 

 

 

 

 

 

 

 

 

Example 4.5: Analysis of a swimming pool 
 
 
File name Content 
 
slr  Swimming pool left + right (without joint) 

200 

0.5 

400 

8×1.5 = 12 

2×1=2 

8×1.5 = 12 

Raft I Raft IIPla

Section

Detail Detail 

A

B

2 [cm] raft thickness

2×1=2 

a a 

8×
1.

5 
=

 1
2 
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smt  Swimming pool left + right (with interaction and with shearing forces) 
sol  Swimming pool left 5 (without interaction) 
sor  Swimming pool right 5 (without interaction) 
ssy  Swimming pool left + right 5 (with interaction and without shearing forces) 
au*  Influence of the filling around Swimming pool (uniform load *) 
 

 

 
 

 

 

 

 

 

 

 

 

9.5 Examples of chapter 5 
 Part B: Theory used in the formulation of ELPLA 
 
Example 5.1: Rigidity of simple square raft 
 

10 [m]

Pla

4 [m]3 [m] 5 [m]

B5 

586.8

N

Section A-A

587.6

586.1
586.1

A

Original ground surface

A

lin

Property

B4 

B2 B3 

B1 25
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800

1538

1565

1350

1368

1254

1600120

1265

500

1560

350

750
89

2150

d 

bc
a

P

P
P

P

Raft 
P = 9000    [kN] 
Es = 2×107 
νb = 0.15    [-] 

Compressible layer
Es = 10000 [kN/m2]

 
File name Content 
 
th*  Raft thickness from 0.0 to 0.9 [m] 
t1*  Raft thickness from 1.0 to 2.0 [m] 
txx  Rigid raft 
 
 
 
 
 
 
 
 
 
 
 

 

 
 

Example 5.2: Rigidity of irregular raft on irregular subsoil 
 
 
File name Content 
 
g00 Raft thickness d = 0.0 [m] 
gb* Raft thickness from 0.1 to 0.9 [m] 
g1* Raft thickness from 1.0 to 1.9 [m] 
g20 Raft thickness d = 2.0 [m] 
gxx Rigid raft 
 
 
 
 
 
 
 

 

 

 
 

 

 

 

9.6 Examples of chapter 6 
 Part B: Theory used in the formulation of ELPLA 
 
Example 6.1: Analysis of a raft for a high rise building 
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66.00 [m]
L=18×3.60=64.80 [m]

3.3.6

17.55 [m]

3.l=3.

a) Longitudinal A-B

b) Plan (section E-F)

c) Cross-section C-D

9
8
7
6
5
4
3

1
1
1
1

1
2

k 

D

C 

E F 

BA
Columns 0.50/0.50Columns 0.40/0.500.4

47
.7

0 

h=
3.

1 3.
1

6.
3.

1
6.

3.
0

File name Content 

raft1  Only raft 
raft2  Raft- cellar 
raft3  Raft-cellar-superstructure 
raftr  Rigid raft 
 

 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9.7 Examples of chapter 7 
 Part B: Theory used in the formulation of ELPLA 
 
Example 7.1: Verification of nonlinear analysis for Winkler's model 
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File name Content 
 
fc1  Point load (linear analysis) 
fcn  Point load (non-linear analysis) 
fu1  Uniform load (linear analysis) 
fun  Uniform load (non-linear analysis) 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Example 7.2: Analysis of Rectangular foundation subjected to eccentric loading 
 
 
File name Content 

3.0 [m]

2.00.5 0.5

250 [kN/m2]

Footing borders

Assumed influenced area borders

Loading case a)

Loading case b)

1000 [kN]

0.
5 

0.
5

2.
0 

3.
0 

0.
12

0.
12
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2

L

L/4 L/4

L/6

x

y

B/4

B/4
B/6

B

ex

ey N s
1

4
5

3

55

4

3

5

2

22

N = 2000 [kN] 

e

r = 5 [m]

 
rz2  Zone (2) 
rz3  Zone (3) 
rz4  Zone (4) 
rz5  Zone (5) 

 
 
 
 
 
 
 

 

 
 
Example 7.3: Circular foundation subjected to eccentric loading 
 
 
File name Content 
 
Cir-e=1.75 e = 1.75 [m]  
Cir-e=2.00 e = 2.00 [m] 
Cir-e=2.25 e = 2.25 [m] 
Cir-e=2.50 e = 2.50 [m] 
Cir-e=2.75 e = 2.75 [m] 
Cir-e=3.00 e = 3.00 [m] 
Cir-e=3.25 e = 3.25 [m] 
Cir-e=3.50 e = 3.50 [m] 
Cir-e=3.75 e = 3.75 [m] 
 
 
 
 
 
 

 

 

 

 

 

 

 

 

 

 

Example 7.4: Elastoplastic analysis of a raft resting on Continuum medium 
 
 
File name Content 
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lin  Linear analysis 
non  Non-linear analysis 

 

 

L = 32×0.5 = 16 

a

a
B

 =
 1

6×
0.

5 
=

 8
 

d = 0.5 

Section

p = 600 [kN/m2] 

Plan
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