Example 6

Analysis of two-dimensional truss

ELPLA-Tutorial

Contents

Page

1	Desci	ription of the problem	3
	1.1	Loads and dimensions	3
	1.2	Grid material	3
	11.3	Analysis of the grid	3
2	Creat	ting the project	4
	2.1	Calculation method	4
	2.2	Project identification	6
	2.3	FE-Net data	6
	2.4	Girders	9
	2.5	Supports/ Boundary conditions	14
	2.6	Loads	19
3	Carry	ying out the calculations	23
	3.1	Starting ELPLA-Solver	23
	3.2	Carrying out all computations	23
4	View	ring data and result graphics	24
5	Index	ζ.	26

1 Description of the problem

Since truss structure is considered as a special case of plane frame problems, an example of a two-dimensional truss structure is selected to illustrate some features of *ELPLA* for analyzing plane frames.

1.1 Loads and dimensions

The truss consists of 4 equal spans. All truss members have a cross section area of 0.01 [m^2] and moment of inertia of 0.00001 [m^4]. Geometry of the truss and loads are shown in Figure 6-1.

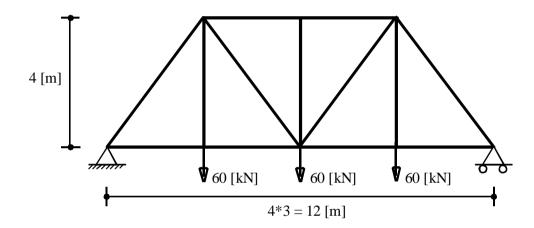


Figure 6-1 Geometry of the truss and loads

1.2 Truss properties

The properties of the truss are:

Young's modulus	E_b	$=2 * 10^8$	$[kN/m^2]$
Area of the member	A	= 0.01	[m ²]
Moment of inertia of the member	Ι	= 0.00001	[m ⁴]

1.3 Analysis of the grid

It is required to analyze the truss assuming that all members are pin connected. This Tutorial Manual will not present the theoretical background of modeling the problem. For more information concerning the method of analysis, a complete reference for numerical calculation methods is well documented in the User's Guide of *ELPLA*.

2 Creating the project

In this section the user will learn how to create a project for analyzing a truss as a plane frame example. The example will be processed step by step to show the possibilities and abilities of the program. To enter the data of the example, follow the instructions and steps in the next paragraphs.

2.1 Calculation method

To create the project, start the sub program *ELPLA-Data*. Choose the "New project" command from the "File" menu. The "Calculation methods" wizard appears, Figure 6-2. The wizard will guide you through the steps required to create the system data of the project. As shown in Figure 6-2, the first form of the wizard is the "Analysis type" form.

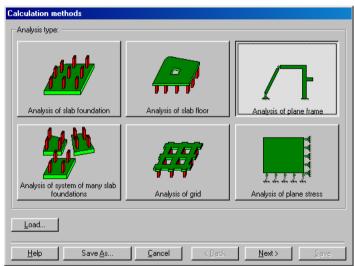


Figure 6-2 "Calculation method" wizard with "Analysis type" form

In the "Analysis type" form in Figure 6-2, define the analysis type of the problem where *ELPLA* can deal with different structural systems. As the analysis type is a truss problem, select "Analysis of plane frame". Then click "Next" button to go to the next form.

The next form is the "System symmetry", Figure 6-3. In this form

- Choose "Unsymmetrical system"
- Click "Next" button

The last form of the wizard assistant contains the "Option" list, Figure 6-4. In this list, *ELPLA* displays some of the available options corresponding to the used numerical model, which differ from model to other.

In this list

- Check "Supports/ Boundary conditions" check box
- Click "Save" button

Calculation methods	
System symmetry:	
Unsymmetrical system	
Symmetrical system about x-axis	Double-symmetrical system
Symmetrical system about y-axis	Anti-symmetrical system in x-axis
Help Save <u>A</u> s Ca	ncel < <u>B</u> ack <u>Next></u> Save

Figure 6-3 "System symmetry" form

Calculation methods	
Options:	
Slab with girders	1
Addtional springs	
🗌 🗹 💑 Supports/Boundary conditions	
land Internet Foundation	
Determining limit depth	
Concrete design	
Nonlinear subsoil model	
Determining displacements in soil	
Determining stresses in soil	
Determining strains in soil	
Influence of neighboring foundations on the slab	
Influence of temperature change on the slab	
Influence of additional settlements on the slab	
Select All	
Help Save As Cancel < Back	

Figure 6-4 "Options" list

After clicking "Save" button, the "Save as" dialog box appears, Figure 6-5.

In this dialog box

- Type a file name for the current project in the file name edit box. For example type "Truss". *ELPLA* will use automatically this file name in all reading and writing processes
- Click "Save" button to complete the definition of the calculation method and the file name of the project

ELPLA will activate the "Data" menu. Also the file name of the current project [Truss] will be displayed instead of the word [Untitled] in the *ELPLA-Data* title bar.

Save As				? ×
Save in: 🔂) Examples	▼ 🗈	1	📸 🔳 🔛
Floor Grid Example				
File <u>n</u> ame:	Truss			<u>S</u> ave
Save as <u>t</u> ype:	Isolated slab foundation-files	(*.P01)	•	Cancel

Figure 6-5 "Save as" dialog box

2.2 **Project identification**

To identify the project, choose "Project identification" command from "Data" menu of *ELPLA-Data*. The dialog box in Figure 6-6 appears.

In this dialog box

- Type the following line to describe the problem in the "Title" edit box: "Analysis of a plane frame"
- Type the date of the project in the "Date" edit box
- Type "Truss" in the "Project" edit box
- Click "Save" button

P	roject Ide	entification	×
	- Project Io	dentification:	
	Title	Analysis of a truss	
	Date	8.06.2006	•
	Project	Truss	
	<u>S</u> ave	e <u>C</u> ancel <u>H</u> elp <u>L</u> oad Savey	<u>A</u> s

Figure 6-6 "Project identification" dialog box

2.3 FE-Net data

To enter the truss geometry, an imaginary net must be first defined with suitable dimensions and then the truss is entered lately by connecting the corresponding nodes on the net that define the truss shape. To define the net for the truss geometry, choose "FE-Net data" command from "Data" menu. The "FE-Net generation" wizard appears as shown in Figure 6-7. This wizard will guide you through the steps required to generate the FE-Net. The first form of the wizard is the "Slab type" form which contains a group of templates of different shapes of nets (Figure 6-7).

These net templates are used to generate standard nets that have constant size in both x- and y-directions.

To generate an imaginary net

- In the "Slab type" options, choose the rectangular slab option to create an imaginary net of a rectangular area
- Type 12 in the "Length of rectangular slab" edit box
- Type 4 in the "Width of rectangular slab" edit box
- Click "Next" button to go to the next form

FE-Net Generation	
Rectangular slab:	
Length of rectangular slab	L [m] 12
Width of rectangular slab	B [m] 4
	< <u>B</u> ack <u>N</u> ext > <u>F</u> inish

Figure 6-7 "FE-Net generation" wizard with "Slab type" form

After clicking "Next" in the "FE-Net generation" wizard, the following "Generation type" form appears, Figure 6-8. *ELPLA* can deal with various types of generations with triangle and/ or rectangular elements.

In this form

- Choose rectangular elements
- Click "Next"

FE-Net generation			
Generation type			
		$ \begin{array}{c} & & & & & & \\ & & & & & & & \\ & & & & $	× × × × × × × × × × × × × × × × × × ×
	Cancel	< Back Next >	• <u>Finish</u>

Figure 6-8 "Generation type" form

After clicking "Next" button in "Generation type" form, the following "Grid definition" dialog box in Figure 6-9 appears with default values of constant element size.

In this "Grid definition" dialog box

- Type 12 in the "No. of grid intervals" edit box for grids in x-direction
- Type 4 in the "No. of grid intervals" edit box for grids in y-direction
- Type 1 in the "Grid interval Dx" edit box
- Type 1 in the "Grid interval *Dy*" edit box
- Click "Finish"

ELPLA will generate an imaginary net for a rectangular area of 12 [m] length and 4 [m] width with square elements of 1.0 [m] each side. The following embedded program in Figure 6-10 appears with the generated imaginary net.

-Net Generation Grid definition:			
Grids in x-direction:			
🔽 Constant grid interval			
No. of grid intervals	12		
Grid interval Dx [m]	1,00		
- Grids in y-direction:			
🔽 Constant grid interval			
No. of grid intervals	4		
Grid interval Dy [m]	1,00		
Help	Cancel K Back	Next>	Finish

Figure 6-9 "FE-Net generation" dialog box

ELPLA-Tutorial

EL	PLA-	Data	n - [Tri	· [221	[FE-	Net]																		_ 8 ×
<u>F</u> ile	_								<u>I</u> n table		ptions			<u>W</u> indo			-							- ×
D					a (\$∕	<u>ن</u>	•		9 K	×	Α	• e			100 💌	0	• •	۲	6	t)	3	•	
K)	Cil	··•	- *			Ρ.			#					🔛	4	-								
																								_
-						ļ																		
-						<u>†</u>									+		·							
											_													
-																	4							
1		Ì.				1																		
																								-
∢ ∰βSt			Doroco			1@	Eucl		Tutori-I	 F	<u>ਡ</u> ੀ ਸ∠-	المنامع	Eupera	L I E	ലപം	ıng-Beis;	iale 1	— -		D	_			▶ I 19:45
ឮ១០	art		Persor	naiin	ansiat.	· <u> </u>	Expl	orer -	i utoriai			orials	-Examp	ie 🦉	JUebu	ing-Beisj	ыењ	E	LPLA	A-Dat	a		3412	- 19:45

Figure 6-10 Imaginary net of a rectangular area on the screen

After finishing the generation of the imaginary net, do the following two steps:

- Choose "Save FE-Net" command from "File" menu in Figure 6-10 to save the data of the imaginary net
- Choose "Close FE-Net" command from "File" menu in Figure 6-10 to close "FE-Net" embedded program and to return to the main window of *ELPLA-Data*

2.4 Girders

To define the truss members, choose "Girders" command from "Data" menu of *ELPLA-Data*. The following embedded program in Figure 6-11 appears.

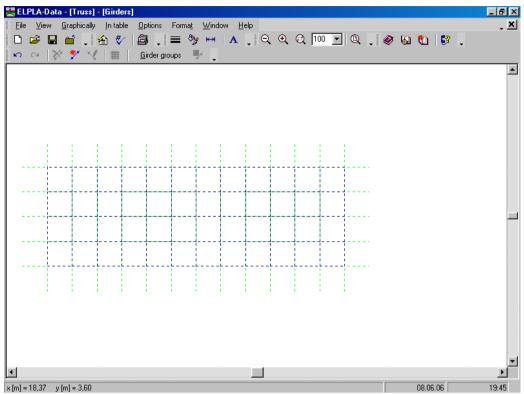


Figure 6-11 "Girders" embedded program

To enter the cross section of the girders

- Choose "Girder groups" command from "In Table" menu in Figure 6-11. The following option box in Figure 6-12 appears
- In this option box select "Rectangular cross section"
- Click "OK" button

Cross section definition	×
Cross section definition:	
C Rectangular cross section	<u>0</u> k
 General cross section 	Cancel
🔿 Create a new element group as T/L-girder	
	<u>H</u> elp

Figure 6-12 "Cross section definition" option box

After clicking "OK" button in the "Cross section definition" option box, the following list box in Figure 6-13 appears.

In this list box

- Enter the material properties of the girder, cross section dimensions and the girder weight as indicated in Figure 6-13. This is done by entering the value in the corresponding cell and press "Enter" button
- Click "OK"

irder gro	oups				X
Group No.	E-Modulus of girder E [kN/m2]	Moment of inertia I [m4]	Area A [m2]	Girder weight pb [kN/m]	<u>O</u> k <u>C</u> ancel
1	2E+08	0,000010	0,01	0,00	<u>I</u> nsert
					Сору
					Delete
					New
					<u>H</u> elp
					<u>E</u> xcel

Figure 6-13 "Defining girder groups" list box

Defining the girder locations on the net

Defining girder locations on the net may be carried out either graphically or numerically (in a table). In the current example the user will learn how to define girder locations on the net graphically.

To define the girder locations on the net graphically

- Choose "Add girders" command from the "Graphically" menu in Figure 6-11. When "Add girders" command is chosen, the cursor will change from an arrow to a cross hair
- Click the left mouse button on the start node of the first girder and drag the mouse until the end node of that girder (Figure 6-14). Then, click on the end node. The "Girder elements" dialog box in Figure 6-15 appears

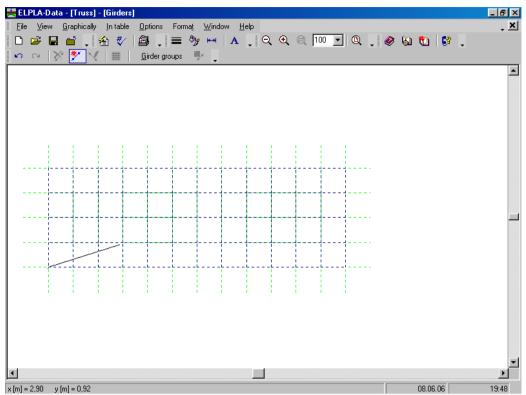
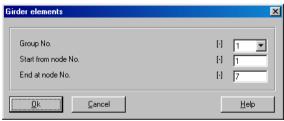
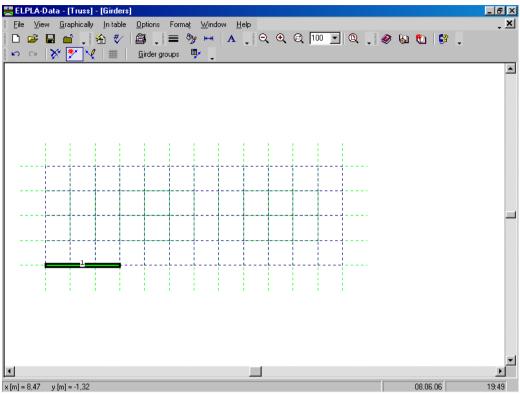
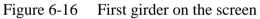


Figure 6-14 Add girder by mouse

In this dialog box

- Select the group No.
- Click "OK"


Figure 6-15 "Girder elements" dialog box

Now, the first girder is defined as shown in Figure 6-16. Note that *ELPLA* has typed automatically the girder type on it indicating the No. of girder group.

Repeat the previous steps to add the remaining girders on the net. After you have completed the definition of all girders, the screen should look like the following Figure 6-17.

ELPLA-Tutorial

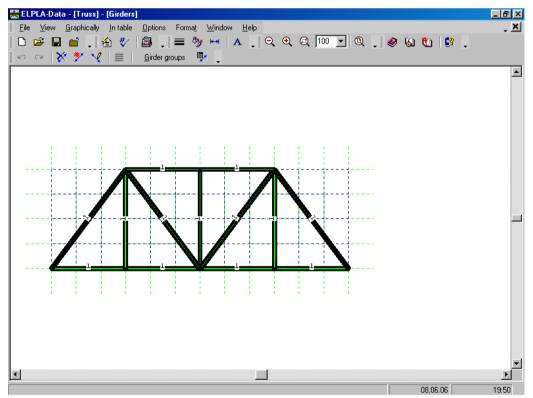


Figure 6-17 Girders on the screen

After entering all data and parameters of girders, do the following two steps:

- Choose "Save girders" command from "File" menu in Figure 6-17 to save the data of girders
- Choose "Close girders" command from "File" menu in Figure 6-17 to close the "Girders" embedded program and to return to the main window of *ELPLA-Data*

2.5 Supports/ Boundary conditions

To define supports, choose "Supports/ Boundary conditions" command from "Data" menu of *ELPLA-Data*. The following embedded program in Figure 6-18 appears.

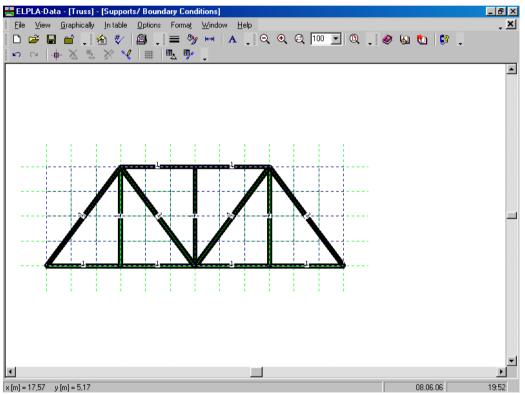


Figure 6-18 "Supports/ Boundary conditions" embedded program

ELPLA can display girders, supports, loads, etc. in one view together. The advantage of this option is that the user can control easily locations of supports or loads on the net when entering the rest of the data. In the case of analysis of girder problems, *ELPLA* displays girders during input of other data. As shown in Figure 6-18, girders are drawn with the actual thickness.

To view girders as simple lines

- Choose "Plot parameters" command from "Options" menu. The "Plot parameters" dialog box in Figure 6-19 appears
- In the "General plot parameters" tab, uncheck the "Draw thickness" check box in the "Girder systems" dialog box
- Click "OK" button

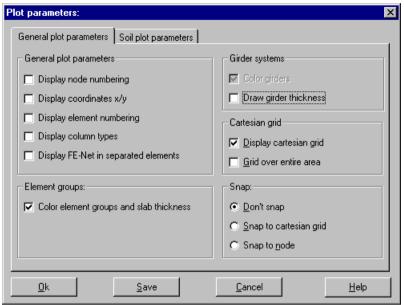


Figure 6-19 "Plot parameters" dialog box

After clicking "OK" in the "Plot parameters" dialog box, the girders are drawn as simple lines as shown in Figure 6-20.

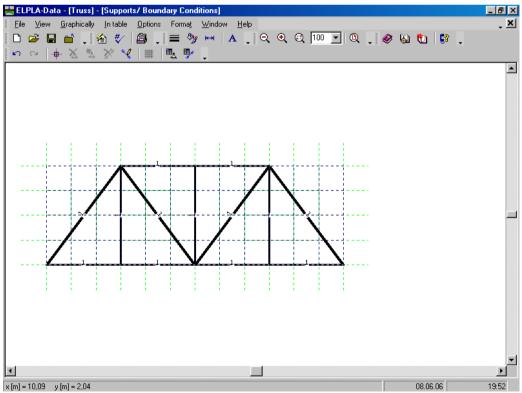


Figure 6-20 Girders are drawn in simple lines

Defining supports on the net

Defining supports or boundary conditions on the net may be carried out either graphically or numerically (in a table). In the current example the user will learn how to define supports on the net graphically.

To define the hinged support

- Choose "Select nodes" command from the "Graphically" menu in Figure 6-20. When "Select nodes" command is chosen, the cursor will change from an arrow to a cross hair
- Click the left mouse button on nodes that have hinged supports as shown in Figure 6-21
- Choose "Add boundaries" command from "Graphically" menu in Figure 6-21. "Supports/ Boundary conditions" dialog box in Figure 6-22 appears

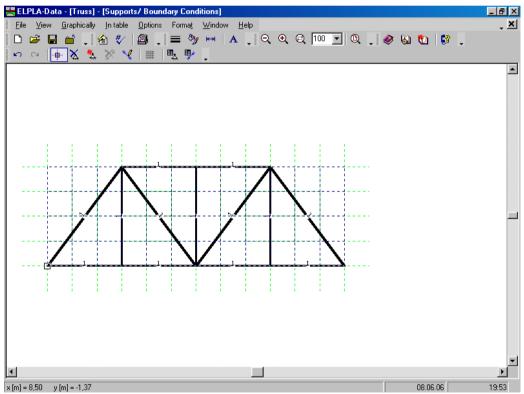


Figure 6-21 Selection of hinged support node

In this dialog box

- Type 0 in the "Displacement u" edit box to define the horizontal supports
- Type 0 in the "Displacement w" edit box to define the vertical supports
- Click "OK" button

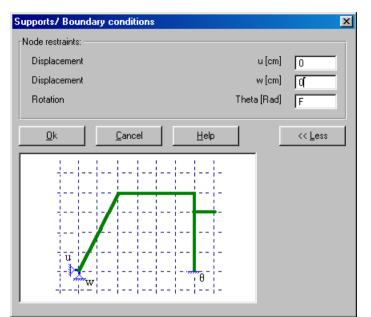


Figure 6-22 "Supports/ Boundary conditions" dialog box

To define the roller support, repeat the steps used to define the hinged support except that the displacement in *x*-direction is free. To make the displacement of the roller support is free in *x*-direction, type "F" in the "Displacement u" instead of typing "0".

After you have completed the definition of supports, the screen should look like the following Figure 6-23.

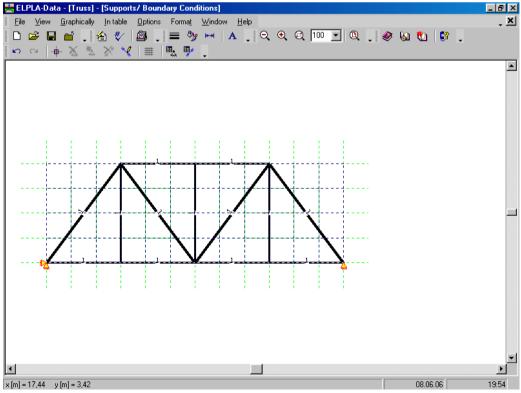


Figure 6-23 Supports on the screen

Defining hinges for truss members

Assuming all truss members are pin connected, these members will be defined as hinged-hinged elements. Defining element hinges on the net may be carried out either graphically or numerically (in a table). In the current example the user will learn how to define element hinges on the net graphically.

To define the element hinged, choose "Edit hinges" command from the "Graphically" menu in Figure 6-20. When "Edit hinges" command is chosen, the cursor will change from an arrow to a cross hair. Double click on the element that has the hinges. "Edit hinges" dialog box in Figure 6-24 appears.

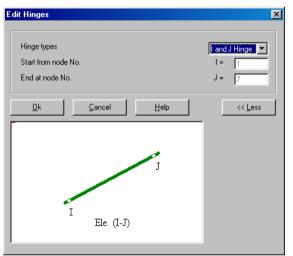


Figure 6-24 "Edit hinges" dialog box

In this dialog box, choose "I and J Hinge" from the hinge types list to define both ends of the element as hinges. Then click "OK" button.

After you have completed the definition of element hinges, the screen should look like the following Figure 6-25.

ELPLA-Tutorial

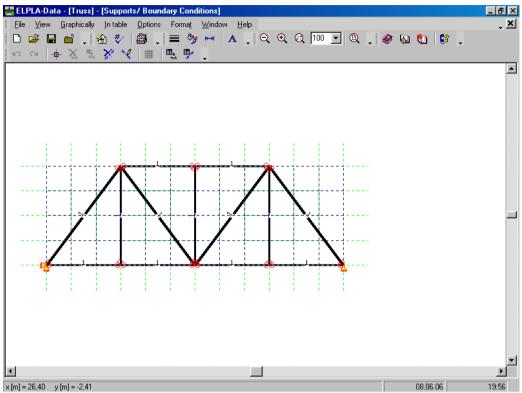


Figure 6-25 Supports and hinges on the screen

After entering supports and hinges, do the following two steps:

- Choose "Save supports/ boundary conditions" command from "File" menu in Figure 6-23 to save the data of supports
- Choose "Close supports/ boundary conditions" command from "File" menu in Figure 6-23 to close the "Supports/ Boundary conditions" embedded program and to return to the main window of *ELPLA-Data*

2.6 Loads

To define the concentrated load, choose "Loads" command from "Data" menu of *ELPLA-Data*. The following embedded program in Figure 6-26 appears with girders on the net.

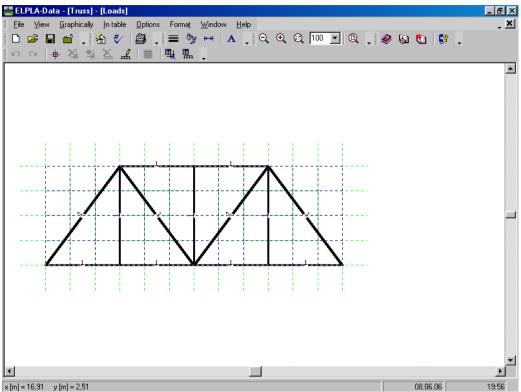


Figure 6-26 "Loads" embedded program

Although the user can define loads on both girder element and girder nodes in plane frame problem, in the truss problem we will define the loads at nodes only.

To enter the concentrated load at nodes choose "Select nodes" command from "Graphically" menu in the window of Figure 6-26. When "Select nodes" command is chosen, the cursor is changed from an arrow to a cross hair. Choose nodes to be loaded as shown in Figure 6-27. Then choose "Add nodal loads" command from "Graphically" menu, the "Nodal loads" dialog box shown in Figure 6-28 appears. In this dialog box, type 60 in the "Load Pv" edit box to define the vertical nodal load then click "OK" button.

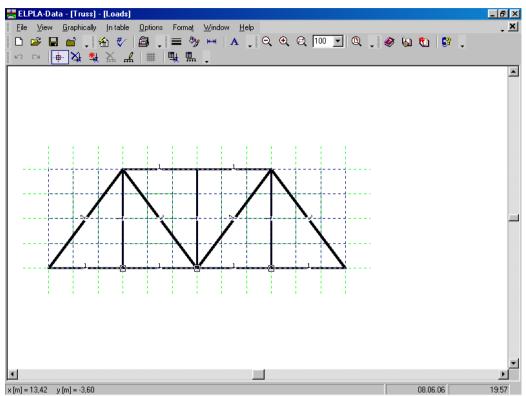


Figure 6-27 Selection of loaded nodes

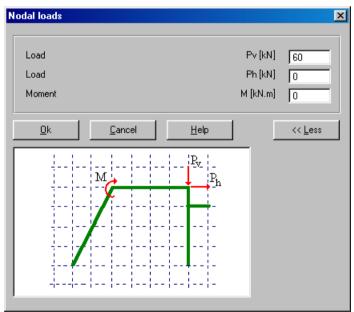


Figure 6-28 "Nodal loads" dialog box

After you have completed the definition of the nodal loads, the screen should look like the following Figure 6-29.

ELPLA-Tutorial

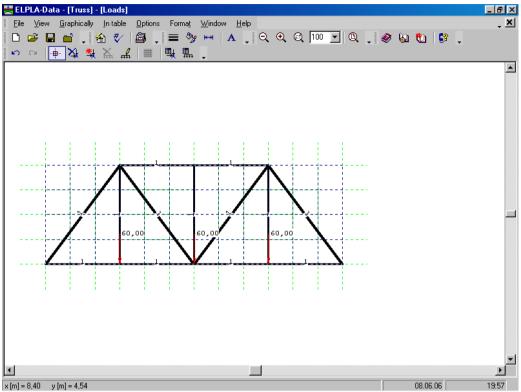


Figure 6-29 Truss load on the screen

After finishing the definition of load data, do the following two steps:

- Choose "Save loads" command from "File" menu in Figure 6-29 to save the load data
- Choose "Close loads" command from "File" menu in Figure 6-29 to close the "Loads" embedded program and return to the main window of *ELPLA-Data*

Creating the project of the grid is now complete. It is time to analyze this project. In the next section you will learn how to use *ELPLA* for analyzing projects.

3 Carrying out the calculations

3.1 Starting *ELPLA-Solver*

To analyze the problem, switch to *ELPLA-Solver*. This is done by clicking on "Solver" in the menu bar of the sub programs at the upper-right corner of *ELPLA-Data*. Then, *ELPLA-Solver* window in Figure 6-30 appears.

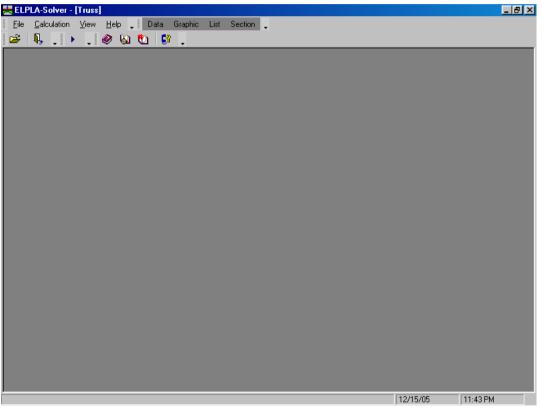


Figure 6-30 Opening screen of the sub program ELPLA-Solver

ELPLA-Solver automatically opens the data file of the current example and displays the data file name in the title bar of *ELPLA-Solver* window. Also, *ELPLA* will active the "Calculation" menu. This menu contains commands of all calculations. Commands of the calculation depend on the analysis type. For the current example, the items, which are required to be calculated, are:

- Preparing the calculation
- Analysis of plane frame

These calculation items can be carried out individually or in one time.

3.2 Carrying out all computations

To carry out all computations in one time, choose "Computation of all" command from "Calculation" menu in *ELPLA-Solver* window. The progress of all computations according to the defined analysis will be carried out automatically with displaying information through menus and messages.

Analysis progress

Analysis progress menu in Figure 6-31 appears in which various phases of calculation are progressively reported as the program analyzes the problem. Also, a status bar on the screen down of the *ELPLA-Solver* window displays information about the progress of calculation.

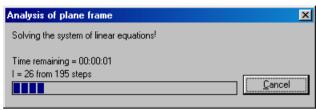


Figure 6-31 Analysis progress menu

4 Viewing data and result graphics

To view the data and results of a problem that has already been defined and analyzed graphically, switch to *ELPLA-Graphic*. This is done by clicking on "Graphic" in the menu bar of the sub programs at the upper-right corner of *ELPLA-Solver* window. *ELPLA-Graphic* window in Figure 6-32 appears. *ELPLA-Graphic* automatically opens the data file of the current example and displays the data file name in the title bar of *ELPLA-Graphic* window.

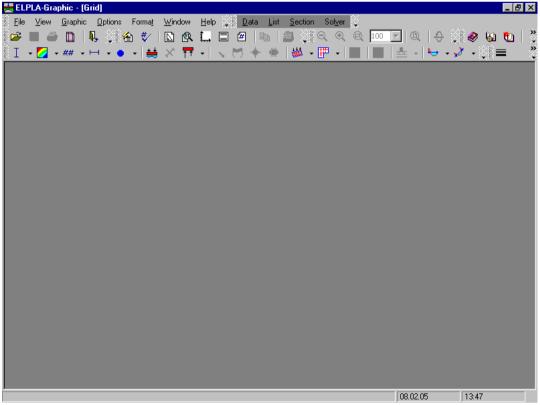
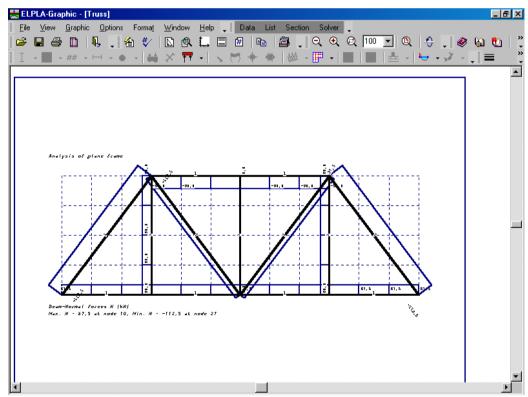


Figure 6-32 Opening screen of the sub program *ELPLA-Graphic*


To view the results of girders, choose "Beam results" command and then "Distribution of internal forces (in plane)" command from "Graphic" menu of *ELPLA-Graphic*. The following option box in Figure 6-33 appears.

In this option box

- Select "Beam-Normal forces *N*" as an example for the results to be displayed
- Click "OK" button

Distribution of Internal Force	es (in plane) 🛛 🔀
Select one item to draw	
Beam-Normal forces N	C Beam-Bending moments Mb
C Beam-Shear forces Qs	
C Vertical displacements w	
C Horizontal displacements u	Cancel
C Rotation	
C Frame deformation Delta	<u>H</u> elp

Figure 6-33 "Distribution of internal forces (in plane)" option box

The normal forces are now displayed for the truss as shown in Figure 6-34.

Figure 6-34 Truss normal forces

5 Index

A

Analysis	3
Analysis type	

B

Boundary conditions

С

Calculation	
Calculation methods	
Computation of all	
Cross section	

F

FE-Net generation	5
-------------------	---

G

Generation type	7
Geometry	
Girder locations	
Girders	
Girders as simple lines	
Graphic	
•	

Project identification6	
-------------------------	--

S

P

L

N

Solver	
Supports	4, 14, 16, 19