Examples to verify and illustrate ELPLA

Example 17: Verifying Winkler's model and Isotropic elastic half-space soil medium

1 Description of the problem

A simple example was carried out to verify *Winkler's* model and Isotropic elastic half-space soil medium, by comparing *ELPLA* results with those of *Mikhaiel* (1978), Example 34, page 189, and *Henedy* (1987), Section 3.6, page 66, or *Bazaraa* (1997).

A square raft of 0.4 [m] thickness and 10 [m] side was chosen and subdivided into 64 square elements, each has dimensions of 1.25 [m] \times 1.25 [m]. The raft carries four column loads, each 500 [kN] as shown in Figure 28.

Figure 28 Raft dimensions, FE-Net and loads

The raft material has the following parameters:

Young's modulus	E_b	$= 2 \times 10^{7}$	$[kN/m^2]$
Poisson's ratio	v_b	= 0.25	[-]
Unit weight	γ_b	= 0	$[kN/m^3]$

2 Results

Taking advantage of the symmetry in shape, soil and load geometry about both x- and y-axes, the analysis is carried out by considering only a quarter of the raft.

a) Winkler's model

The raft rests on *Winkler's* springs having modulus of subgrade reaction of $k_s = 600$ [kN/m³]. Table 21 compares the results obtained by *ELPLA* with those of *Mikhaiel* (1978) and *Bazaraa* (1997) at the selected points *a* and *b*.

Table 21Comparative examination of the results of Mikhaiel (1978), Bazaraa (1997)
and ELPLA (Winkler's model)

Settlement s [cm]	Mikhaiel (1978)	Bazaraa (1997)	ELPLA
under the column (point b)	3.401	3.411	3.412
at the corner (point <i>a</i>)	3.143	3.070	3.069

b) Isotropic elastic half-space soil medium

The same problem shown in Figure 28 was examined for the case where Isotropic elastic halfspace medium represents the soil. The soil has modulus of elasticity $E_s = 5000 \text{ [kN/m}^2\text{]}$ and *Poisson's* ratio $v_s = 0.2$ [-]. The obtained results for Isotropic elastic half-space soil medium according to *Mikhaiel* (1978), *Bazaraa* (1997) and *ELPLA* at the selected points *a* and *b* are shown in Table 22.

Table 22Comparative examination of the results of Mikhaiel (1978), Bazaraa (1997)
and ELPLA (Isotropic elastic half-space soil medium)

Settlement s [cm]	Mikhaiel (1978)	Bazaraa (1997)	ELPLA
under the column (point b)	3.421	3.440	3.458
at the corner (point <i>a</i>)	2.834	2.709	2.746

It is obviously from Table 21 and Table 22 that the results of *Winkler's* model and Isotropic elastic half-space soil medium obtained by *ELPLA* are nearly equal to those obtained by *Mikhaiel* (1978) and *Bazaraa* (1997).