Examples to verify and illustrate ELPLA

Example 18: Verifying simply supported slab

1 Description of the problem

To examine the accuracy of the calculation of Finite elements-method and the convergence characteristics of the stiffness matrix, the maximum values of deflection w, moments m_x , m_y and m_{xy} of a simply supported rectangular slab are obtained at different nets of finite elements. The slab carries a uniform distributed load of $p = 100 \text{ [kN/m}^2\text{]}$ as shown in Figure 29. Young's modulus of the slab material is $E_b = 1.2 \times 10^7 \text{ [kN/m}^2\text{]}$ and Poisson's ratio is $v_b = 0$ [-]. The slab thickness is d = 0.1 [m].

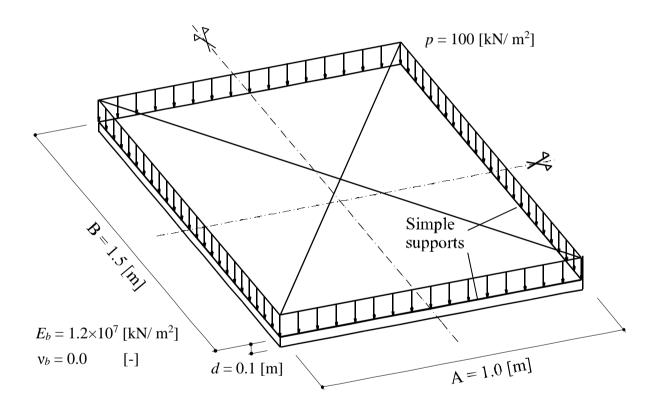
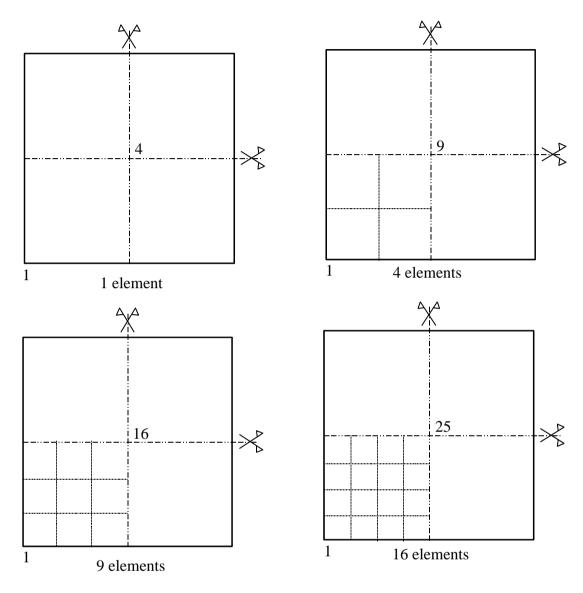



Figure 29 Simply supported rectangular slab

2 Analysis and results

Because of the symmetry it is sufficient to analyze only one quarter slab. The finite element nets of the slab are shown in Figure 30. Results of *ELPLA* are compared by the exact solution using the known charts from *Czerny* (1955) and Finite elements-solution from *Falter* (1992) in Table 23 to Table 26. From the tables, it can be noticed that results of deflection and moments obtained by *ELPLA* are the same as those of *Falter* (1992), Example 14.2, page 378, which are calculated using Finite elements-method. A sufficient accuracy for the results may be considered at slab mesh of 4 elements according to *Czerny's* charts.

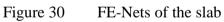


Table 23Deflection w [cm] computed by Czerny's charts (1955), Falter (1992) and ELPLA

No. of elements	Node No.	Deflection w [cm]		
		<i>Czerny</i> (1955)	Falter (1992)	ELPLA
1	4	0.077	0.094	0.094
4	9		0.082	0.082
9	16		0.079	0.079
16	25		0.078	0.078

Examples to verify and illustrate ELPLA

Table 24	Moment m_x [kN.m/m] computed by <i>Czerny's</i> charts (1955), <i>Falter</i> (1992)
	and ELPLA

No. of elements	Node No.	Moment m_x [kN.m/m]		
		<i>Czerny</i> (1955)	Falter (1992)	ELPLA
1	4	7.30	10.29	10.29
4	9		7.99	7.99
9	16		7.58	7.59
16	25		7.45	7.45

Table 25Moment m_y [kN.m/m] computed by Czerny's charts (1955), Falter (1992)
and ELPLA

No. of elements	Node No.	Moment m_x [kN.m/m]		
		<i>Czerny</i> (1955)	Falter (1992)	ELPLA
1	4	2.88	3.36	3.36
4	6		3.42	3.29
9	12		2.98	2.98
16	20		2.89	2.89

Table 26Moment m_{xy} [kN.m/m] computed by using Czerny's chart, Falter (1992)
and ELPLA

No. of elements	Node No.	Moment m_x [kN.m/m]		
		<i>Czerny</i> (1955)	Falter (1992)	ELPLA
1	1	6.13	6.57	6.57
4	1		6.35	6.35
9	1		6.26	6.26
16	1		6.22	6.22